{"title":"Application of photodynamic activation of prodrugs combined with phototherapy in tumor treatment.","authors":"Yining Du,Jingyuan Zhao,Shuai Li,Hong Yuan","doi":"10.1186/s12943-025-02404-9","DOIUrl":null,"url":null,"abstract":"The design of prodrugs aims to address the issues of systemic toxicity and poor specificity associated with traditional chemotherapy drugs, thereby improving patient survival rates. However, effectively controlling the activation of prodrugs and further improve the efficacy remains a significant challenge that needs to be addressed. Photodynamic therapy (PDT) is a non-invasive cancer treatment that utilizes photosensitizers (PS) to generate reactive oxygen species (ROS) under light irradiation, selectively killing tumor cells, but PDT still faces challenges such as limited therapeutic efficacy. To address challenge in cancer treatment, light-activated prodrugs have emerged as a promising strategy to achieve precise drug release and activation through light control in terms of time and location. This review explores the classification and mechanisms of light-activated prodrugs, with a focus on covalent and non-covalent photosensitizer-drug conjugates. These approaches enhance targeting, precisely control drug release, and achieve synergistic effects between PDT and chemotherapy. By analyzing these strategies, we highlight their potential in improving PDT efficacy and advancing targeted cancer therapy. Finally, we discuss future directions for designing advanced light-activated prodrug systems, providing new insights for the development of more effective and targeted cancer treatments.","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"47 1","pages":"200"},"PeriodicalIF":27.7000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12943-025-02404-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The design of prodrugs aims to address the issues of systemic toxicity and poor specificity associated with traditional chemotherapy drugs, thereby improving patient survival rates. However, effectively controlling the activation of prodrugs and further improve the efficacy remains a significant challenge that needs to be addressed. Photodynamic therapy (PDT) is a non-invasive cancer treatment that utilizes photosensitizers (PS) to generate reactive oxygen species (ROS) under light irradiation, selectively killing tumor cells, but PDT still faces challenges such as limited therapeutic efficacy. To address challenge in cancer treatment, light-activated prodrugs have emerged as a promising strategy to achieve precise drug release and activation through light control in terms of time and location. This review explores the classification and mechanisms of light-activated prodrugs, with a focus on covalent and non-covalent photosensitizer-drug conjugates. These approaches enhance targeting, precisely control drug release, and achieve synergistic effects between PDT and chemotherapy. By analyzing these strategies, we highlight their potential in improving PDT efficacy and advancing targeted cancer therapy. Finally, we discuss future directions for designing advanced light-activated prodrug systems, providing new insights for the development of more effective and targeted cancer treatments.
期刊介绍:
Molecular Cancer is a platform that encourages the exchange of ideas and discoveries in the field of cancer research, particularly focusing on the molecular aspects. Our goal is to facilitate discussions and provide insights into various areas of cancer and related biomedical science. We welcome articles from basic, translational, and clinical research that contribute to the advancement of understanding, prevention, diagnosis, and treatment of cancer.
The scope of topics covered in Molecular Cancer is diverse and inclusive. These include, but are not limited to, cell and tumor biology, angiogenesis, utilizing animal models, understanding metastasis, exploring cancer antigens and the immune response, investigating cellular signaling and molecular biology, examining epidemiology, genetic and molecular profiling of cancer, identifying molecular targets, studying cancer stem cells, exploring DNA damage and repair mechanisms, analyzing cell cycle regulation, investigating apoptosis, exploring molecular virology, and evaluating vaccine and antibody-based cancer therapies.
Molecular Cancer serves as an important platform for sharing exciting discoveries in cancer-related research. It offers an unparalleled opportunity to communicate information to both specialists and the general public. The online presence of Molecular Cancer enables immediate publication of accepted articles and facilitates the presentation of large datasets and supplementary information. This ensures that new research is efficiently and rapidly disseminated to the scientific community.