Guoping Wu, Zhe Dong, Zhongcai Li, Qiongxian Zhao, Song Chen, Qing Dong, Liqiong Huang, Yaru Zhang, Xuan Wang, Sai Chen, Hongbing Liu, Zanzong Sun, Shengmei Ban, Baopeng Tian, Yunlong Tan
{"title":"Comorbidity patterns and immune-metabolic differences in patients with acute-episode of schizophrenia spectrum disorders.","authors":"Guoping Wu, Zhe Dong, Zhongcai Li, Qiongxian Zhao, Song Chen, Qing Dong, Liqiong Huang, Yaru Zhang, Xuan Wang, Sai Chen, Hongbing Liu, Zanzong Sun, Shengmei Ban, Baopeng Tian, Yunlong Tan","doi":"10.1038/s41537-025-00646-6","DOIUrl":null,"url":null,"abstract":"<p><p>Patients with schizophrenia (SCZ) face multiple health challenges due to the complication of chronic diseases and psychiatric disorders. Among these, cardiovascular comorbidities are the leading cause of their life expectancy being 15-20 years shorter than that of the general population. Identifying comorbidity patterns and uncovering differences in immune and metabolic function are crucial steps toward improving prevention and management strategies. A retrospective cross-sectional study was conducted using electronic medical records of inpatients discharged between 2015 and 2024 from a municipal psychiatric hospital in China. The study included patients diagnosed with Schizophrenia, Schizotypal, and Delusional Disorders (SSDs) (ICD-10: F20-F29). Comorbidity patterns were identified through latent class analysis (LCA) based on the 20 most common comorbid conditions among SSD patients. To investigate differences in peripheral blood metabolic and immune function, linear regression or generalized linear models were applied to 44 laboratory test indicators collected during the acute episode. The Benjamini-Hochberg method was used for p-value correction, and the false discovery rate (FDR) was calculated, with statistical significance set at FDR < 0.05. Among 3,697 inpatients with SSDs, four distinct comorbidity clusters were identified: SSDs only (Class 1), High-Risk Metabolic Multisystem Disorders (Class 2, n = 39), Low-Risk Metabolic Multisystem Disorders (Class 3, n = 573), and Sleep Disorders (Class 4, n = 205). Compared to Class 1, Class 2 exhibited significantly elevated levels of apolipoprotein A (ApoA; β = 90.62), apolipoprotein B (ApoB; β = 0.181), mean platelet volume (MPV; β = 0.994), red cell distribution width-coefficient of variation (RDW-CV; β = 1.182), antistreptolysin O (ASO; β = 276.80), and absolute lymphocyte count (ALC; β = 0.306), along with reduced apolipoprotein AI (ApoAI; β = -0.173) and hematocrit (HCT; β = -35.13). Class 3 showed moderate increases in low-density lipoprotein cholesterol (LDL-C; β = 0.113), MPV (β = 0.267), white blood cell count (WBC; β = 0.476), and absolute neutrophil count (ANC; β = 0.272), with decreased HCT (β = -9.81). Class 4 was characterized by elevated aggregate index of systemic inflammation (AISI; β = 81.07), neutrophil-to-lymphocyte ratio (NLR; β = 0.465), and systemic inflammation response index (SIRI; β = 0.346), indicating a heightened inflammatory state. The comorbidity patterns of patients with SCZ can be distinctly classified. During the acute episode, those with comorbid metabolic disorders exhibit a higher risk of cardiovascular diseases and immune system abnormalities, while patients with comorbid sleep disorders present a pronounced systemic inflammatory state and immune dysfunction. This study provides a basis for the chronic disease management and anti-inflammatory treatment, while also offering objective biomarker insights for transdiagnostic research.</p>","PeriodicalId":74758,"journal":{"name":"Schizophrenia (Heidelberg, Germany)","volume":"11 1","pages":"102"},"PeriodicalIF":4.1000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12276266/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Schizophrenia (Heidelberg, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41537-025-00646-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
Patients with schizophrenia (SCZ) face multiple health challenges due to the complication of chronic diseases and psychiatric disorders. Among these, cardiovascular comorbidities are the leading cause of their life expectancy being 15-20 years shorter than that of the general population. Identifying comorbidity patterns and uncovering differences in immune and metabolic function are crucial steps toward improving prevention and management strategies. A retrospective cross-sectional study was conducted using electronic medical records of inpatients discharged between 2015 and 2024 from a municipal psychiatric hospital in China. The study included patients diagnosed with Schizophrenia, Schizotypal, and Delusional Disorders (SSDs) (ICD-10: F20-F29). Comorbidity patterns were identified through latent class analysis (LCA) based on the 20 most common comorbid conditions among SSD patients. To investigate differences in peripheral blood metabolic and immune function, linear regression or generalized linear models were applied to 44 laboratory test indicators collected during the acute episode. The Benjamini-Hochberg method was used for p-value correction, and the false discovery rate (FDR) was calculated, with statistical significance set at FDR < 0.05. Among 3,697 inpatients with SSDs, four distinct comorbidity clusters were identified: SSDs only (Class 1), High-Risk Metabolic Multisystem Disorders (Class 2, n = 39), Low-Risk Metabolic Multisystem Disorders (Class 3, n = 573), and Sleep Disorders (Class 4, n = 205). Compared to Class 1, Class 2 exhibited significantly elevated levels of apolipoprotein A (ApoA; β = 90.62), apolipoprotein B (ApoB; β = 0.181), mean platelet volume (MPV; β = 0.994), red cell distribution width-coefficient of variation (RDW-CV; β = 1.182), antistreptolysin O (ASO; β = 276.80), and absolute lymphocyte count (ALC; β = 0.306), along with reduced apolipoprotein AI (ApoAI; β = -0.173) and hematocrit (HCT; β = -35.13). Class 3 showed moderate increases in low-density lipoprotein cholesterol (LDL-C; β = 0.113), MPV (β = 0.267), white blood cell count (WBC; β = 0.476), and absolute neutrophil count (ANC; β = 0.272), with decreased HCT (β = -9.81). Class 4 was characterized by elevated aggregate index of systemic inflammation (AISI; β = 81.07), neutrophil-to-lymphocyte ratio (NLR; β = 0.465), and systemic inflammation response index (SIRI; β = 0.346), indicating a heightened inflammatory state. The comorbidity patterns of patients with SCZ can be distinctly classified. During the acute episode, those with comorbid metabolic disorders exhibit a higher risk of cardiovascular diseases and immune system abnormalities, while patients with comorbid sleep disorders present a pronounced systemic inflammatory state and immune dysfunction. This study provides a basis for the chronic disease management and anti-inflammatory treatment, while also offering objective biomarker insights for transdiagnostic research.