Apoptotic bodies derived from human umbilical cord mesenchymal stem cells improve recovery from myocardial infarction in swine.

IF 14.3
Wei Luo, Hao Li, Pengfei Zhang, Hao Cao, Yun Dong, Yanshan Gong, Dongling Zhu, YuanFeng Xin, Zhongmin Liu, Ling Gao
{"title":"Apoptotic bodies derived from human umbilical cord mesenchymal stem cells improve recovery from myocardial infarction in swine.","authors":"Wei Luo, Hao Li, Pengfei Zhang, Hao Cao, Yun Dong, Yanshan Gong, Dongling Zhu, YuanFeng Xin, Zhongmin Liu, Ling Gao","doi":"10.1080/15548627.2025.2536449","DOIUrl":null,"url":null,"abstract":"<p><p>Apoptotic bodies (ABs) are a type of extracellular vesicles (EVs) that could contribute to the paracrine effect of stem cells. However, their potential in treating cardiovascular diseases is largely unexplored. This study investigated the therapeutic effects of ABs derived from human umbilical cord mesenchymal stem cells (MSCs) on cardiac recovery in a porcine model of myocardial infarction (MI). In vitro, ABs reduced apoptosis and cytotoxicity in cardiomyocytes under oxygen and glucose deprivation (OGD) conditions and enhanced the capacity of migration and tube formation in endothelial cells. In vivo, akin to MSCs, administration of ABs improved contractile function, reduced infarct size, and mitigated adverse remodeling in pig hearts with MI, concomitantly with increased cardiomyocyte survival and angiogenesis. These cardioprotective effects were mediated through the regulation of autophagy by activating the adenosine monophosphate - activated protein kinase (AMPK) and transcription factor EB (TFEB) signaling pathways. microRNAs contained in ABs were sequenced, revealing that let-7f-5p was the most abundant. let-7f-5p promoted AMPK phosphorylation by targeting protein phosphatase 2 regulatory subunit B alpha (PPP2R2A) and decreased TFEB phosphorylation by targeting MAP4K3 to regulate autophagy, thereby contributing to the effects of ABs. Overall, these findings indicate that MSC-derived ABs have the potential to be a promising and effective acellular therapeutic option for treating MI.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15548627.2025.2536449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Apoptotic bodies (ABs) are a type of extracellular vesicles (EVs) that could contribute to the paracrine effect of stem cells. However, their potential in treating cardiovascular diseases is largely unexplored. This study investigated the therapeutic effects of ABs derived from human umbilical cord mesenchymal stem cells (MSCs) on cardiac recovery in a porcine model of myocardial infarction (MI). In vitro, ABs reduced apoptosis and cytotoxicity in cardiomyocytes under oxygen and glucose deprivation (OGD) conditions and enhanced the capacity of migration and tube formation in endothelial cells. In vivo, akin to MSCs, administration of ABs improved contractile function, reduced infarct size, and mitigated adverse remodeling in pig hearts with MI, concomitantly with increased cardiomyocyte survival and angiogenesis. These cardioprotective effects were mediated through the regulation of autophagy by activating the adenosine monophosphate - activated protein kinase (AMPK) and transcription factor EB (TFEB) signaling pathways. microRNAs contained in ABs were sequenced, revealing that let-7f-5p was the most abundant. let-7f-5p promoted AMPK phosphorylation by targeting protein phosphatase 2 regulatory subunit B alpha (PPP2R2A) and decreased TFEB phosphorylation by targeting MAP4K3 to regulate autophagy, thereby contributing to the effects of ABs. Overall, these findings indicate that MSC-derived ABs have the potential to be a promising and effective acellular therapeutic option for treating MI.

人脐带间充质干细胞衍生的凋亡小体促进猪心肌梗死的恢复。
凋亡小体(apoptosis bodies, ABs)是一种细胞外囊泡(extracellular vesic泡,ev),可以促进干细胞的旁分泌作用。然而,它们在治疗心血管疾病方面的潜力在很大程度上尚未被探索。本研究探讨了人脐带间充质干细胞(MSCs)提取的抗体对猪心肌梗死(MI)模型心脏恢复的治疗作用。在体外,ABs可减少氧和葡萄糖剥夺(OGD)条件下心肌细胞的凋亡和细胞毒性,增强内皮细胞的迁移和成管能力。在体内,与MSCs类似,给药ABs可以改善心肌梗死猪心脏的收缩功能,减少梗死面积,减轻不良重构,同时增加心肌细胞存活和血管生成。这些心脏保护作用是通过激活单磷酸腺苷活化蛋白激酶(AMPK)和转录因子EB (TFEB)信号通路调节自噬来介导的。对ABs中含有的microrna进行了测序,发现let-7f-5p是最丰富的。let-7f-5p通过靶向蛋白磷酸酶2调节亚单位B α (PPP2R2A)促进AMPK磷酸化,并通过靶向MAP4K3调节自噬来降低TFEB磷酸化,从而促进抗体的作用。总之,这些发现表明,msc衍生的抗体有可能成为治疗心肌梗死的一种有前途和有效的非细胞治疗选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信