Large connected components in sexual networks and their role in HIV transmission in Sub-Saharan Africa: A model-based analysis of HPTN 071(PopART) data.
Francesco Di Lauro, William J M Probert, Michael Pickles, Anne Cori, Robert Hinch, Luca Ferretti, Jasmina Panovska-Griffiths, Lucie Abeler-Dörner, Rory Dunbar, Peter Bock, Deborah J Donnell, Helen Ayles, Sarah Fidler, Richard Hayes, Christophe Fraser
{"title":"Large connected components in sexual networks and their role in HIV transmission in Sub-Saharan Africa: A model-based analysis of HPTN 071(PopART) data.","authors":"Francesco Di Lauro, William J M Probert, Michael Pickles, Anne Cori, Robert Hinch, Luca Ferretti, Jasmina Panovska-Griffiths, Lucie Abeler-Dörner, Rory Dunbar, Peter Bock, Deborah J Donnell, Helen Ayles, Sarah Fidler, Richard Hayes, Christophe Fraser","doi":"10.1016/j.jtbi.2025.112218","DOIUrl":null,"url":null,"abstract":"<p><p>The HIV epidemic in sub-Saharan Africa is historically characterised by high levels of prevalence and incidence. With the global effort to reach UNAIDS 95-95-95 targets, the scaling-up of HIV treatment, and focused preventive interventions, incidence has been declining over the past decade, albeit non-consistently across different sex and age groups. Two questions remain to be addressed to help tailor setting-specific interventions and allocate resources optimally. Firstly, are there unidentified demographic groups that are sources of transmission? Secondly, what are the patterns of decline in incidence across different groups? Model-based assessment is a valuable tool for the design of focused interventions and to answer these questions. PopART-IBM, an individual-based model calibrated to (anonymised) age-and-sex stratified data, was developed in the context of the HPTN-071 (PopART) trial, and it offers a unique opportunity to explore such questions in the context of high-burden HIV communities in Zambia and South Africa. The outputs of the model include the full HIV transmission and partnership networks. In this work, we explore these and show that the sexual partnership network exhibits a large connected component, usually comprising over 40 % of the population, in each of the studied communities. An analysis of the large connected component reveals that it is formed by young people (20-40 years old) and is centered around the most sexually active individuals of the community. At the same time, many individuals in the large connected component only have one partner, highlighting the complex dynamics of risk correlations in a population. Inspecting the transmission network reveals that, on average, more than 80% of transmissions occur among individuals belonging to the large connected component. These findings indicate that populations consisting of young and highly sexually active individuals should be given high priority when designing or deploying interventions.</p>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":" ","pages":"112218"},"PeriodicalIF":2.0000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jtbi.2025.112218","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The HIV epidemic in sub-Saharan Africa is historically characterised by high levels of prevalence and incidence. With the global effort to reach UNAIDS 95-95-95 targets, the scaling-up of HIV treatment, and focused preventive interventions, incidence has been declining over the past decade, albeit non-consistently across different sex and age groups. Two questions remain to be addressed to help tailor setting-specific interventions and allocate resources optimally. Firstly, are there unidentified demographic groups that are sources of transmission? Secondly, what are the patterns of decline in incidence across different groups? Model-based assessment is a valuable tool for the design of focused interventions and to answer these questions. PopART-IBM, an individual-based model calibrated to (anonymised) age-and-sex stratified data, was developed in the context of the HPTN-071 (PopART) trial, and it offers a unique opportunity to explore such questions in the context of high-burden HIV communities in Zambia and South Africa. The outputs of the model include the full HIV transmission and partnership networks. In this work, we explore these and show that the sexual partnership network exhibits a large connected component, usually comprising over 40 % of the population, in each of the studied communities. An analysis of the large connected component reveals that it is formed by young people (20-40 years old) and is centered around the most sexually active individuals of the community. At the same time, many individuals in the large connected component only have one partner, highlighting the complex dynamics of risk correlations in a population. Inspecting the transmission network reveals that, on average, more than 80% of transmissions occur among individuals belonging to the large connected component. These findings indicate that populations consisting of young and highly sexually active individuals should be given high priority when designing or deploying interventions.
期刊介绍:
The Journal of Theoretical Biology is the leading forum for theoretical perspectives that give insight into biological processes. It covers a very wide range of topics and is of interest to biologists in many areas of research, including:
• Brain and Neuroscience
• Cancer Growth and Treatment
• Cell Biology
• Developmental Biology
• Ecology
• Evolution
• Immunology,
• Infectious and non-infectious Diseases,
• Mathematical, Computational, Biophysical and Statistical Modeling
• Microbiology, Molecular Biology, and Biochemistry
• Networks and Complex Systems
• Physiology
• Pharmacodynamics
• Animal Behavior and Game Theory
Acceptable papers are those that bear significant importance on the biology per se being presented, and not on the mathematical analysis. Papers that include some data or experimental material bearing on theory will be considered, including those that contain comparative study, statistical data analysis, mathematical proof, computer simulations, experiments, field observations, or even philosophical arguments, which are all methods to support or reject theoretical ideas. However, there should be a concerted effort to make papers intelligible to biologists in the chosen field.