Rui Wang, Claudia Gilbert, Houda Tahiri, Chun Yang, Solange Landreville, Pierre Hardy
{"title":"MiR-181a-driven downregulation of cholesterol biosynthesis through SREBP2 inhibition suppresses uveal melanoma metastasis.","authors":"Rui Wang, Claudia Gilbert, Houda Tahiri, Chun Yang, Solange Landreville, Pierre Hardy","doi":"10.1186/s13046-025-03459-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>uveal melanoma (UM) is the most common primary intraocular tumor in adults, with metastasis being the leading cause of death. However, effective treatments for metastatic UM remain limited. Emerging evidence suggests that cholesterol metabolism plays a role in cancer progression, but its impact on UM metastasis is not well understood.</p><p><strong>Methods: </strong>we investigated the effects of miR-181a on UM metastasis using multiple UM cell lines and a suprachoroidal injection mouse model. Functional assays, including migration, invasion, and cancer stem-like cell (CSC) formation, were performed. The target of miR-181a was identified through bioinformatics, luciferase assays, and western blotting. Cholesterol levels were measured, and in vitro and in vivo studies assessed the therapeutic potential of combining miR-181a with crizotinib.</p><p><strong>Results: </strong>miR-181a significantly decreases UM cell migration, invasion, and metastasis. Mechanistically, miR-181a was found to target sterol regulatory element-binding protein 2 (SREBP2), thereby inhibiting cholesterol biosynthesis. This decrease in cholesterol levels hindered reduced epithelial-to-mesenchymal transition (EMT) and led to a decline in cancer stem-like cell (CSC) populations in UM. Furthermore, elevated cholesterol or overexpression of SREBP2 abrogated the anti-metastatic effects of miR-181a. Additionally, a combination of miR-181a and crizotinib significantly inhibited metastasis, both in vitro and in vivo.</p><p><strong>Conclusions: </strong>miR-181a inhibits UM metastasis by targeting SREBP2 and reducing cholesterol biosynthesis. Its combination with crizotinib may provide a promising therapeutic strategy for metastatic UM.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"44 1","pages":"215"},"PeriodicalIF":12.8000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12275384/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-025-03459-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: uveal melanoma (UM) is the most common primary intraocular tumor in adults, with metastasis being the leading cause of death. However, effective treatments for metastatic UM remain limited. Emerging evidence suggests that cholesterol metabolism plays a role in cancer progression, but its impact on UM metastasis is not well understood.
Methods: we investigated the effects of miR-181a on UM metastasis using multiple UM cell lines and a suprachoroidal injection mouse model. Functional assays, including migration, invasion, and cancer stem-like cell (CSC) formation, were performed. The target of miR-181a was identified through bioinformatics, luciferase assays, and western blotting. Cholesterol levels were measured, and in vitro and in vivo studies assessed the therapeutic potential of combining miR-181a with crizotinib.
Results: miR-181a significantly decreases UM cell migration, invasion, and metastasis. Mechanistically, miR-181a was found to target sterol regulatory element-binding protein 2 (SREBP2), thereby inhibiting cholesterol biosynthesis. This decrease in cholesterol levels hindered reduced epithelial-to-mesenchymal transition (EMT) and led to a decline in cancer stem-like cell (CSC) populations in UM. Furthermore, elevated cholesterol or overexpression of SREBP2 abrogated the anti-metastatic effects of miR-181a. Additionally, a combination of miR-181a and crizotinib significantly inhibited metastasis, both in vitro and in vivo.
Conclusions: miR-181a inhibits UM metastasis by targeting SREBP2 and reducing cholesterol biosynthesis. Its combination with crizotinib may provide a promising therapeutic strategy for metastatic UM.
期刊介绍:
The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications.
We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options.
We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us.
We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community.
By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.