Characterizing and minimizing uncertainties in diagnostic X-ray beam calibrations using a Monte Carlo-based model and experimental validation.

IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Abdelouahab Abarane, Mustapha Bougteb, Taibi Zidouz, Abdellatif Talbi, Abderrahim Allach, Mounir Mkimel, Mohamed Zaryah, Mohammed Reda Mesradi, Anas Ardouz, Redouane El Baydaoui
{"title":"Characterizing and minimizing uncertainties in diagnostic X-ray beam calibrations using a Monte Carlo-based model and experimental validation.","authors":"Abdelouahab Abarane, Mustapha Bougteb, Taibi Zidouz, Abdellatif Talbi, Abderrahim Allach, Mounir Mkimel, Mohamed Zaryah, Mohammed Reda Mesradi, Anas Ardouz, Redouane El Baydaoui","doi":"10.1007/s12194-025-00943-w","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to develop a flexible Geant4 application capable of modeling all IEC 61267 defined radiation qualities for the HOPEWELL Designs 225 kV X-ray generator, while systematically analyze the impact of various environmental and systematic factors. Using Geant4, we replicated the experimental setup of the LEGEX laboratory and simulated all IEC 61267 radiation qualities by adjusting relevant beam parameters. The model was validated by comparing simulated HVLs and spectra, measured with a CdTe X-123 spectrometer against experimental data, SRS78 software results, and IEC reference values. The simulation demonstrated strong agreement with experimental measurements and published data, confirming the validity of our Geant4 application. We derived the function that characterizes the behavior of Kinetic Energy Released per unit Mass (KERMA) in response to variations in each influencing factor. Geometrical misalignment is the primary contributor to deviations, followed by aluminum purity and diaphragm movement, while environmental factors induced minor fluctuations. Additionally, we quantified backscattered radiation and applied corrective measures to eliminate its impact on measurements. The developed Geant4 application provides a reliable tool for simulating IEC 61267 radiation qualities and optimizing dosimetric accuracy. Our framework offers a cost-effective alternative to replicate different scenarios multiple times to identify and minimizes uncertainties.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-025-00943-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to develop a flexible Geant4 application capable of modeling all IEC 61267 defined radiation qualities for the HOPEWELL Designs 225 kV X-ray generator, while systematically analyze the impact of various environmental and systematic factors. Using Geant4, we replicated the experimental setup of the LEGEX laboratory and simulated all IEC 61267 radiation qualities by adjusting relevant beam parameters. The model was validated by comparing simulated HVLs and spectra, measured with a CdTe X-123 spectrometer against experimental data, SRS78 software results, and IEC reference values. The simulation demonstrated strong agreement with experimental measurements and published data, confirming the validity of our Geant4 application. We derived the function that characterizes the behavior of Kinetic Energy Released per unit Mass (KERMA) in response to variations in each influencing factor. Geometrical misalignment is the primary contributor to deviations, followed by aluminum purity and diaphragm movement, while environmental factors induced minor fluctuations. Additionally, we quantified backscattered radiation and applied corrective measures to eliminate its impact on measurements. The developed Geant4 application provides a reliable tool for simulating IEC 61267 radiation qualities and optimizing dosimetric accuracy. Our framework offers a cost-effective alternative to replicate different scenarios multiple times to identify and minimizes uncertainties.

表征和最大限度地减少诊断x射线束校准使用蒙特卡罗为基础的模型和实验验证的不确定性。
本研究旨在开发一个灵活的Geant4应用程序,能够为HOPEWELL设计的225千伏x射线发生器建模所有IEC 61267定义的辐射质量,同时系统地分析各种环境和系统因素的影响。利用Geant4,我们复制了LEGEX实验室的实验设置,并通过调整相关光束参数模拟了所有IEC 61267辐射质量。通过比较CdTe X-123光谱仪测量的模拟HVLs和光谱,与实验数据、SRS78软件结果和IEC参考值进行了验证。仿真结果与实验测量和已发表的数据非常吻合,证实了我们的Geant4应用程序的有效性。我们推导了表征每单位质量释放的动能(KERMA)的行为的函数,以响应每个影响因素的变化。几何不对准是造成偏差的主要原因,其次是铝纯度和隔膜运动,而环境因素引起的波动较小。此外,我们量化了背散射辐射,并采取了纠正措施来消除其对测量的影响。开发的Geant4应用程序为模拟IEC 61267辐射质量和优化剂量学精度提供了可靠的工具。我们的框架提供了一种具有成本效益的替代方案,可以多次复制不同的场景,以识别和最小化不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Radiological Physics and Technology
Radiological Physics and Technology RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
3.00
自引率
12.50%
发文量
40
期刊介绍: The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信