Chufan Yan, Caio Andreeta Figueiredo, Inga-Marie Pompös, Bilge Ugursu, Paula Arribas-Lange, Sergej Skosyrski, Seulkee Yang, Petra Althoff, Norbert Kociok, Antonia M Joussen, Susanne A Wolf
{"title":"Sex differences on laser-induced choroidal neovascularization and short-chain fatty acid treatment in a mouse model.","authors":"Chufan Yan, Caio Andreeta Figueiredo, Inga-Marie Pompös, Bilge Ugursu, Paula Arribas-Lange, Sergej Skosyrski, Seulkee Yang, Petra Althoff, Norbert Kociok, Antonia M Joussen, Susanne A Wolf","doi":"10.1186/s12974-025-03508-1","DOIUrl":null,"url":null,"abstract":"<p><p>Age-related macular degeneration (AMD) is a leading cause of blindness worldwide, with a clinical presentation that varies between sexes. In late-stage AMD, choroidal neovascularization (CNV) triggers retinal inflammation and degeneration, processes that are exacerbated by an overactive response of retinal microglial cells. Short-chain fatty acids (SCFAs) have emerged as potential treatments for AMD due to their anti-inflammatory properties. In this study, we investigate the effects of SCFA treatment in a laser-induced CNV mouse model, focusing on sex-dependent differences in disease progression and microglial response. Our findings demonstrate distinct sex-specific patterns in the development of CNV and associated pathological hallmarks. SCFA treatment resulted in a slight increase in density of Iba1<sup>+</sup> microglial cells in females at 3 days post-laser (3dpl), while it prevented an increase in males at 7 dpl, with both sexes showing enhanced microglial ramification. The dynamics of microglial density were likely linked to protective effects on CNV lesion, leakage size, and inflammation, which occurred earlier in females and later in males. At transcriptional level, SCFA showed mixed effects, mainly targeting inflammation resolution, mitochondrial support, and neuronal repair in a sex-dependent manner. In vitro, SCFAs reduced microglial phagocytosis of retinal debris, suggesting a potential anti-inflammatory action. This study underscores the importance of considering sex-specific responses in the development of AMD treatments, such as SCFAs, and highlights the need for personalized therapeutic strategies.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"22 1","pages":"188"},"PeriodicalIF":9.3000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12276663/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12974-025-03508-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness worldwide, with a clinical presentation that varies between sexes. In late-stage AMD, choroidal neovascularization (CNV) triggers retinal inflammation and degeneration, processes that are exacerbated by an overactive response of retinal microglial cells. Short-chain fatty acids (SCFAs) have emerged as potential treatments for AMD due to their anti-inflammatory properties. In this study, we investigate the effects of SCFA treatment in a laser-induced CNV mouse model, focusing on sex-dependent differences in disease progression and microglial response. Our findings demonstrate distinct sex-specific patterns in the development of CNV and associated pathological hallmarks. SCFA treatment resulted in a slight increase in density of Iba1+ microglial cells in females at 3 days post-laser (3dpl), while it prevented an increase in males at 7 dpl, with both sexes showing enhanced microglial ramification. The dynamics of microglial density were likely linked to protective effects on CNV lesion, leakage size, and inflammation, which occurred earlier in females and later in males. At transcriptional level, SCFA showed mixed effects, mainly targeting inflammation resolution, mitochondrial support, and neuronal repair in a sex-dependent manner. In vitro, SCFAs reduced microglial phagocytosis of retinal debris, suggesting a potential anti-inflammatory action. This study underscores the importance of considering sex-specific responses in the development of AMD treatments, such as SCFAs, and highlights the need for personalized therapeutic strategies.
期刊介绍:
The Journal of Neuroinflammation is a peer-reviewed, open access publication that emphasizes the interaction between the immune system, particularly the innate immune system, and the nervous system. It covers various aspects, including the involvement of CNS immune mediators like microglia and astrocytes, the cytokines and chemokines they produce, and the influence of peripheral neuro-immune interactions, T cells, monocytes, complement proteins, acute phase proteins, oxidative injury, and related molecular processes.
Neuroinflammation is a rapidly expanding field that has significantly enhanced our knowledge of chronic neurological diseases. It attracts researchers from diverse disciplines such as pathology, biochemistry, molecular biology, genetics, clinical medicine, and epidemiology. Substantial contributions to this field have been made through studies involving populations, patients, postmortem tissues, animal models, and in vitro systems.
The Journal of Neuroinflammation consolidates research that centers around common pathogenic processes. It serves as a platform for integrative reviews and commentaries in this field.