{"title":"Ferroptosis and gut microbiota: A new horizon in alcohol-associated liver disease management.","authors":"Yue Chen, Wenkang Gao, Kailin Cai, Ling Yang, Huikuan Chu","doi":"10.1007/s00018-025-05815-5","DOIUrl":null,"url":null,"abstract":"<p><p>Alcohol-associated liver disease (ALD) is one of the most common chronic liver diseases worldwide, contributing significantly to liver cirrhosis and hepatocellular carcinoma, with limited effective treatment options. Approximately 50% of patients with ALD exhibit iron overload, which can further trigger the occurrence of ferroptosis. Recent studies indicate that ferroptosis plays a role in the development and progression of ALD through pro-inflammatory and pro-fibrotic mechanisms. Additionally, the gut microbiota exerts a complex influence on ALD, with pathogens like Candida albicans and Enterococcus faecalis promoting its progression, whereas Bifidobacterium appears to have a protective effect. Emerging findings indicate that microorganisms like Lactobacillus and metabolites such as 1,3-diaminopropane and reuterin can modulate iron homeostasis. However, the intrinsic link between gut microbiota-derived metabolites and ferroptosis in ALD remains inconclusive. This review comprehensively synthesizes current knowledge regarding the microbiota-ferroptosis crosstalk in ALD, with particular emphasis on microbial regulation of hepatic iron homeostasis and microbiota-driven modulation of oxidative stress through lipid peroxidation and antioxidant system interactions. Notably, we propose either suppressing hepatic ferroptosis or inducing ferroptosis in pathogenic bacterial strains as dual therapeutic strategies to mitigate ALD progression. These insights highlight the therapeutic potential of the gut microbiota-ferroptosis axis, paving the way for precision management strategies in ALD.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"282"},"PeriodicalIF":6.2000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12276196/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-025-05815-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Alcohol-associated liver disease (ALD) is one of the most common chronic liver diseases worldwide, contributing significantly to liver cirrhosis and hepatocellular carcinoma, with limited effective treatment options. Approximately 50% of patients with ALD exhibit iron overload, which can further trigger the occurrence of ferroptosis. Recent studies indicate that ferroptosis plays a role in the development and progression of ALD through pro-inflammatory and pro-fibrotic mechanisms. Additionally, the gut microbiota exerts a complex influence on ALD, with pathogens like Candida albicans and Enterococcus faecalis promoting its progression, whereas Bifidobacterium appears to have a protective effect. Emerging findings indicate that microorganisms like Lactobacillus and metabolites such as 1,3-diaminopropane and reuterin can modulate iron homeostasis. However, the intrinsic link between gut microbiota-derived metabolites and ferroptosis in ALD remains inconclusive. This review comprehensively synthesizes current knowledge regarding the microbiota-ferroptosis crosstalk in ALD, with particular emphasis on microbial regulation of hepatic iron homeostasis and microbiota-driven modulation of oxidative stress through lipid peroxidation and antioxidant system interactions. Notably, we propose either suppressing hepatic ferroptosis or inducing ferroptosis in pathogenic bacterial strains as dual therapeutic strategies to mitigate ALD progression. These insights highlight the therapeutic potential of the gut microbiota-ferroptosis axis, paving the way for precision management strategies in ALD.
期刊介绍:
Journal Name: Cellular and Molecular Life Sciences (CMLS)
Location: Basel, Switzerland
Focus:
Multidisciplinary journal
Publishes research articles, reviews, multi-author reviews, and visions & reflections articles
Coverage:
Latest aspects of biological and biomedical research
Areas include:
Biochemistry and molecular biology
Cell biology
Molecular and cellular aspects of biomedicine
Neuroscience
Pharmacology
Immunology
Additional Features:
Welcomes comments on any article published in CMLS
Accepts suggestions for topics to be covered