A Review of Deep Learning-Based Medical Image Segmentation

IF 2.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xinyue Zhang, Jianfeng Wang, Xiaochun Cheng, Junran Li
{"title":"A Review of Deep Learning-Based Medical Image Segmentation","authors":"Xinyue Zhang,&nbsp;Jianfeng Wang,&nbsp;Xiaochun Cheng,&nbsp;Junran Li","doi":"10.1049/ipr2.70163","DOIUrl":null,"url":null,"abstract":"<p>Medical image segmentation, the process of precisely delineating regions of interest (e.g. organs, lesions, cells) within medical images, is a pivotal technique in medical image analysis. It finds widespread application in computer-aided diagnosis, surgical planning, radiation therapy, and pathological analysis, thus playing a crucial role in enabling precision medicine and enhancing the quality of clinical care. Traditional medical image segmentation methods often rely on hand-crafted features and rule-based approaches, which struggle to handle the inherent complexity and variability of medical imagery, leading to limitations in segmentation accuracy and robustness. Recently, deep learning methodologies, driven by their powerful capabilities in automatic feature learning and non-linear modelling, have overcome the limitations of traditional methods and achieved significant advancements in the field of medical image segmentation. This review provides a comprehensive overview and summary of recent progress in deep learning-based medical image segmentation, with a particular focus on fully supervised learning paradigms leveraging convolutional neural networks, transformers, and the segment anything model. We delve into the underlying principles, network architectures, advantages, and limitations of these approaches. Furthermore, we systematically compare their performance across diverse imaging modalities, anatomical structures, and pathological targets. We also present a curated compilation of commonly used datasets, evaluation metrics, and loss functions relevant to medical image segmentation. Finally, we discuss future research directions and potential challenges, offering insights into the evolving landscape of this critical field.</p>","PeriodicalId":56303,"journal":{"name":"IET Image Processing","volume":"19 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ipr2.70163","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Image Processing","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ipr2.70163","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Medical image segmentation, the process of precisely delineating regions of interest (e.g. organs, lesions, cells) within medical images, is a pivotal technique in medical image analysis. It finds widespread application in computer-aided diagnosis, surgical planning, radiation therapy, and pathological analysis, thus playing a crucial role in enabling precision medicine and enhancing the quality of clinical care. Traditional medical image segmentation methods often rely on hand-crafted features and rule-based approaches, which struggle to handle the inherent complexity and variability of medical imagery, leading to limitations in segmentation accuracy and robustness. Recently, deep learning methodologies, driven by their powerful capabilities in automatic feature learning and non-linear modelling, have overcome the limitations of traditional methods and achieved significant advancements in the field of medical image segmentation. This review provides a comprehensive overview and summary of recent progress in deep learning-based medical image segmentation, with a particular focus on fully supervised learning paradigms leveraging convolutional neural networks, transformers, and the segment anything model. We delve into the underlying principles, network architectures, advantages, and limitations of these approaches. Furthermore, we systematically compare their performance across diverse imaging modalities, anatomical structures, and pathological targets. We also present a curated compilation of commonly used datasets, evaluation metrics, and loss functions relevant to medical image segmentation. Finally, we discuss future research directions and potential challenges, offering insights into the evolving landscape of this critical field.

Abstract Image

基于深度学习的医学图像分割研究进展
医学图像分割是医学图像中精确描绘感兴趣区域(如器官、病变、细胞)的过程,是医学图像分析中的关键技术。它广泛应用于计算机辅助诊断、手术计划、放射治疗和病理分析,从而在实现精准医疗和提高临床护理质量方面发挥着至关重要的作用。传统的医学图像分割方法通常依赖于手工制作的特征和基于规则的方法,这些方法难以处理医学图像固有的复杂性和可变性,导致分割的准确性和鲁棒性受到限制。近年来,深度学习方法凭借其在自动特征学习和非线性建模方面的强大能力,克服了传统方法的局限性,在医学图像分割领域取得了重大进展。这篇综述对基于深度学习的医学图像分割的最新进展进行了全面的概述和总结,特别关注了利用卷积神经网络、变压器和任意分割模型的完全监督学习范式。我们将深入研究这些方法的基本原理、网络架构、优点和局限性。此外,我们系统地比较了它们在不同成像方式、解剖结构和病理目标上的表现。我们也提出了一个常用的数据集,评估指标,和损失函数相关的医学图像分割策划汇编。最后,我们讨论了未来的研究方向和潜在的挑战,为这一关键领域的发展前景提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Image Processing
IET Image Processing 工程技术-工程:电子与电气
CiteScore
5.40
自引率
8.70%
发文量
282
审稿时长
6 months
期刊介绍: The IET Image Processing journal encompasses research areas related to the generation, processing and communication of visual information. The focus of the journal is the coverage of the latest research results in image and video processing, including image generation and display, enhancement and restoration, segmentation, colour and texture analysis, coding and communication, implementations and architectures as well as innovative applications. Principal topics include: Generation and Display - Imaging sensors and acquisition systems, illumination, sampling and scanning, quantization, colour reproduction, image rendering, display and printing systems, evaluation of image quality. Processing and Analysis - Image enhancement, restoration, segmentation, registration, multispectral, colour and texture processing, multiresolution processing and wavelets, morphological operations, stereoscopic and 3-D processing, motion detection and estimation, video and image sequence processing. Implementations and Architectures - Image and video processing hardware and software, design and construction, architectures and software, neural, adaptive, and fuzzy processing. Coding and Transmission - Image and video compression and coding, compression standards, noise modelling, visual information networks, streamed video. Retrieval and Multimedia - Storage of images and video, database design, image retrieval, video annotation and editing, mixed media incorporating visual information, multimedia systems and applications, image and video watermarking, steganography. Applications - Innovative application of image and video processing technologies to any field, including life sciences, earth sciences, astronomy, document processing and security. Current Special Issue Call for Papers: Evolutionary Computation for Image Processing - https://digital-library.theiet.org/files/IET_IPR_CFP_EC.pdf AI-Powered 3D Vision - https://digital-library.theiet.org/files/IET_IPR_CFP_AIPV.pdf Multidisciplinary advancement of Imaging Technologies: From Medical Diagnostics and Genomics to Cognitive Machine Vision, and Artificial Intelligence - https://digital-library.theiet.org/files/IET_IPR_CFP_IST.pdf Deep Learning for 3D Reconstruction - https://digital-library.theiet.org/files/IET_IPR_CFP_DLR.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信