Boosting photocatalytic benzylic C(sp3)-H bonds oxidation via an embedded S-scheme BA2PbBr4/MoO3 heterojunction

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Mengqing Li , Xin Yang , Jiayu Yi , Lijuan Shen , Xuhui Yang , Bo Weng , Min-Quan Yang
{"title":"Boosting photocatalytic benzylic C(sp3)-H bonds oxidation via an embedded S-scheme BA2PbBr4/MoO3 heterojunction","authors":"Mengqing Li ,&nbsp;Xin Yang ,&nbsp;Jiayu Yi ,&nbsp;Lijuan Shen ,&nbsp;Xuhui Yang ,&nbsp;Bo Weng ,&nbsp;Min-Quan Yang","doi":"10.1016/j.jcis.2025.138450","DOIUrl":null,"url":null,"abstract":"<div><div>The selective oxidation of benzylic C(sp<sup>3</sup>)-H bonds to aldehydes/ketones is pivotal in production of value-added chemicals, but remains challenging to proceed under moderate conditions with high production rate. Semiconductor photocatalysis offers a sustainable alternative by utilizing solar energy and O<sub>2</sub>, yet catalysts face limitations due to fast charge recombination and insufficient surface reactivity. Here, we develop a novel S-scheme heterojunction of BA<sub>2</sub>PbBr<sub>4</sub>/MoO<sub>3</sub> by integrating MoO<sub>3</sub> nanobelts into BA<sub>2</sub>PbBr<sub>4</sub> nanoplates to form an embedded architecture. The design forms a tight and large interfacial contact and establishes a built-in electric field (BEF) at interfaces, providing sufficient charge transfer channels to direct charge separation while preserving strong redox potentials. Importantly, MoO<sub>3</sub> enhances toluene adsorption, enriching reactants on the catalyst surface and accelerating mass/charge transfer. The optimal BA<sub>2</sub>PbBr<sub>4</sub>/MoO<sub>3</sub> heterojunction achieves 5560 μmol g<sup>−1</sup> h<sup>−1</sup> and 880 μmol g<sup>−1</sup> h<sup>−1</sup> for benzaldehyde and benzyl alcohol production, respectively, which are 2.5-fold higher than pure BA<sub>2</sub>PbBr<sub>4</sub>. This study highlights S-scheme heterojunction engineering as a strategic approach to enhance photocatalytic performance by synergizing charge dynamics and surface reactivity, offering a green pathway for selective C<img>H bond functionalization in chemical synthesis.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"700 ","pages":"Article 138450"},"PeriodicalIF":9.4000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725018417","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The selective oxidation of benzylic C(sp3)-H bonds to aldehydes/ketones is pivotal in production of value-added chemicals, but remains challenging to proceed under moderate conditions with high production rate. Semiconductor photocatalysis offers a sustainable alternative by utilizing solar energy and O2, yet catalysts face limitations due to fast charge recombination and insufficient surface reactivity. Here, we develop a novel S-scheme heterojunction of BA2PbBr4/MoO3 by integrating MoO3 nanobelts into BA2PbBr4 nanoplates to form an embedded architecture. The design forms a tight and large interfacial contact and establishes a built-in electric field (BEF) at interfaces, providing sufficient charge transfer channels to direct charge separation while preserving strong redox potentials. Importantly, MoO3 enhances toluene adsorption, enriching reactants on the catalyst surface and accelerating mass/charge transfer. The optimal BA2PbBr4/MoO3 heterojunction achieves 5560 μmol g−1 h−1 and 880 μmol g−1 h−1 for benzaldehyde and benzyl alcohol production, respectively, which are 2.5-fold higher than pure BA2PbBr4. This study highlights S-scheme heterojunction engineering as a strategic approach to enhance photocatalytic performance by synergizing charge dynamics and surface reactivity, offering a green pathway for selective CH bond functionalization in chemical synthesis.
通过嵌入S-scheme BA2PbBr4/MoO3异质结促进光催化C(sp3)-H键氧化
苯基C(sp3)-H键选择性氧化成醛/酮是生产增值化学品的关键,但在中等条件下进行高生产率仍然具有挑战性。半导体光催化通过利用太阳能和O2提供了一种可持续的替代方案,但由于快速电荷重组和表面反应性不足,催化剂面临局限性。在这里,我们通过将MoO3纳米带集成到BA2PbBr4纳米片中形成嵌入式结构,开发了一种新的S-scheme的BA2PbBr4/MoO3异质结。该设计形成了紧密而大的界面接触,并在界面处建立了内置电场(BEF),为直接电荷分离提供了足够的电荷转移通道,同时保持了强氧化还原电位。重要的是,MoO3增强了甲苯吸附,丰富了催化剂表面的反应物,加速了质量/电荷传递。最佳的BA2PbBr4/MoO3异质结对苯甲醛和苯甲醇的产量分别达到5560 μmol g−1 h−1和880 μmol g−1 h−1,是纯BA2PbBr4的2.5倍。本研究强调s型异质结工程是通过协同电荷动力学和表面反应性来提高光催化性能的战略途径,为化学合成中选择性CH键功能化提供了绿色途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信