Multi-view Ensemble Feature Selection via SemiDefinite Programming

IF 6 2区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Xiaojian Ding, Xin Wang, Pengcheng Shi
{"title":"Multi-view Ensemble Feature Selection via SemiDefinite Programming","authors":"Xiaojian Ding, Xin Wang, Pengcheng Shi","doi":"10.1016/j.ejor.2025.07.014","DOIUrl":null,"url":null,"abstract":"Multi-view learning faces significant challenges in selecting discriminative features while managing redundancy and noise across heterogeneous data sources. To address these issues, this paper introduces Multi-view Ensemble Feature Selection (MEFS), a novel framework that systematically integrates view generation (VG) and view selection (VS) through a unified optimization paradigm. By reformulating feature selection as a MaxCut problem and leveraging SemiDefinite Programming (SDP) relaxation, MEFS dynamically balances the generalization capability of individual views with their pairwise diversity, eliminating the need for manual parameter tuning. A key innovation is the proposed pairwise diversity metric, which quantifies inter-view dissimilarity using between-class scatter matrices to ensure complementary feature subsets. Extensive experiments on ten benchmark datasets demonstrate that MEFS consistently outperforms state-of-the-art methods in accuracy, robustness, and computational efficiency. Ablation studies validate the synergistic effect of combining VG and VS modules.","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"11 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1016/j.ejor.2025.07.014","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-view learning faces significant challenges in selecting discriminative features while managing redundancy and noise across heterogeneous data sources. To address these issues, this paper introduces Multi-view Ensemble Feature Selection (MEFS), a novel framework that systematically integrates view generation (VG) and view selection (VS) through a unified optimization paradigm. By reformulating feature selection as a MaxCut problem and leveraging SemiDefinite Programming (SDP) relaxation, MEFS dynamically balances the generalization capability of individual views with their pairwise diversity, eliminating the need for manual parameter tuning. A key innovation is the proposed pairwise diversity metric, which quantifies inter-view dissimilarity using between-class scatter matrices to ensure complementary feature subsets. Extensive experiments on ten benchmark datasets demonstrate that MEFS consistently outperforms state-of-the-art methods in accuracy, robustness, and computational efficiency. Ablation studies validate the synergistic effect of combining VG and VS modules.
基于半定规划的多视图集成特征选择
多视图学习在选择判别特征和管理异构数据源中的冗余和噪声方面面临重大挑战。为了解决这些问题,本文介绍了多视图集成特征选择(MEFS),这是一个新的框架,通过统一的优化范例系统地集成了视图生成(VG)和视图选择(VS)。通过将特征选择重新表述为MaxCut问题并利用半确定规划(SDP)松弛,MEFS动态地平衡了单个视图的泛化能力及其两两多样性,从而消除了手动参数调优的需要。一个关键的创新是提出的两两多样性度量,它使用类间散点矩阵来量化视图间的不相似性,以确保互补的特征子集。在10个基准数据集上进行的大量实验表明,MEFS在准确性、鲁棒性和计算效率方面始终优于最先进的方法。消融研究证实了VG和VS模块结合的协同效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Operational Research
European Journal of Operational Research 管理科学-运筹学与管理科学
CiteScore
11.90
自引率
9.40%
发文量
786
审稿时长
8.2 months
期刊介绍: The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信