Pablo Reina-Gonzalez, Muhammet Ay, Monica Langley, Elizabeth Plunk, Rachel Strazdins, Abdulla Abu-Salah, Aiesha Anchan, Ahmed Shah, Souvarish Sarkar
{"title":"Neurotoxicants driving glial aging: role of astrocytic aging in non-cell autonomous neurodegeneration.","authors":"Pablo Reina-Gonzalez, Muhammet Ay, Monica Langley, Elizabeth Plunk, Rachel Strazdins, Abdulla Abu-Salah, Aiesha Anchan, Ahmed Shah, Souvarish Sarkar","doi":"10.1093/toxsci/kfaf088","DOIUrl":null,"url":null,"abstract":"<p><p>Astrocytes, the most abundant glial cells in the central nervous system (CNS), play essential roles in maintaining neuronal homeostasis, synaptic regulation, and blood-brain barrier integrity. However, these cells can undergo senescence-a cellular state characterized by irreversible growth arrest and the secretion of proinflammatory factors-in response to aging and pathological stressors, contributing to synaptic dysfunction and neurodegenerative diseases. This review examines the molecular mechanisms driving astrocytic senescence, including oxidative stress, DNA damage, and inflammatory signaling pathways such as NF-κB and the senescence-associated secretory phenotype. A particular focus is placed on the diverse array of known chemical inducers of astrocyte senescence, such as pesticides and heavy metals, which provide critical insights into the processes governing cellular aging in the brain. By analyzing the effects of these inducers, we highlight their implications for neurodegenerative disease progression and brain aging. Understanding astrocytic senescence offers new insights into age-related neuropathology and presents promising avenues for targeted therapies in neurodegenerative disorders induced by environmental toxicants.</p>","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":" ","pages":"20-28"},"PeriodicalIF":4.1000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12448201/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxsci/kfaf088","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Astrocytes, the most abundant glial cells in the central nervous system (CNS), play essential roles in maintaining neuronal homeostasis, synaptic regulation, and blood-brain barrier integrity. However, these cells can undergo senescence-a cellular state characterized by irreversible growth arrest and the secretion of proinflammatory factors-in response to aging and pathological stressors, contributing to synaptic dysfunction and neurodegenerative diseases. This review examines the molecular mechanisms driving astrocytic senescence, including oxidative stress, DNA damage, and inflammatory signaling pathways such as NF-κB and the senescence-associated secretory phenotype. A particular focus is placed on the diverse array of known chemical inducers of astrocyte senescence, such as pesticides and heavy metals, which provide critical insights into the processes governing cellular aging in the brain. By analyzing the effects of these inducers, we highlight their implications for neurodegenerative disease progression and brain aging. Understanding astrocytic senescence offers new insights into age-related neuropathology and presents promising avenues for targeted therapies in neurodegenerative disorders induced by environmental toxicants.
期刊介绍:
The mission of Toxicological Sciences, the official journal of the Society of Toxicology, is to publish a broad spectrum of impactful research in the field of toxicology.
The primary focus of Toxicological Sciences is on original research articles. The journal also provides expert insight via contemporary and systematic reviews, as well as forum articles and editorial content that addresses important topics in the field.
The scope of Toxicological Sciences is focused on a broad spectrum of impactful toxicological research that will advance the multidisciplinary field of toxicology ranging from basic research to model development and application, and decision making. Submissions will include diverse technologies and approaches including, but not limited to: bioinformatics and computational biology, biochemistry, exposure science, histopathology, mass spectrometry, molecular biology, population-based sciences, tissue and cell-based systems, and whole-animal studies. Integrative approaches that combine realistic exposure scenarios with impactful analyses that move the field forward are encouraged.