{"title":"Construction of magnetically separated quantum dot fluorescent aptasensor and its application in MUC1 detection","authors":"Jialing Fan, Qi Geng, Xiujun Li, Heyang Shang, Hailin Zhang, Zemiao Zhang, Bingjun Shen, Lihong Jin","doi":"10.1002/jccs.70040","DOIUrl":null,"url":null,"abstract":"<p>Tumor markers, produced due to genetic alterations, are vital for cancer detection, diagnosis, treatment, and prognosis. Quantum dots (QDs), a novel luminescent nanomaterial, exhibit unique chemical and optical properties. Integrating QDs with biosensing technology enables highly sensitive and selective detection of target molecules, offering significant potential in biomedicine. This study developed a g-CNQDs-Apt/WS<sub>2</sub>/Fe<sub>3</sub>O<sub>4</sub> magnetically separated fluorescent aptasensor based on fluorescence resonance energy transfer (FRET) for detecting the tumor marker mucin 1 (MUC1). Magnetic separation enhanced fluorescence recovery, reduced background interference, and improved the linear detection range for MUC1. The system demonstrated a strong linear correlation (<i>R</i><sup><i>2</i></sup> = 0.9926) between MUC1 concentration and fluorescence recovery, with a detection limit of 0.89 ng/mL, relative standard deviations of 3.24%–4.68%, and recoveries of 94.99%–112.39%. These findings provide valuable insights for developing fluorescent aptasensors for other tumor markers and biomedical targets.</p>","PeriodicalId":17262,"journal":{"name":"Journal of The Chinese Chemical Society","volume":"72 7","pages":"814-830"},"PeriodicalIF":1.5000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Chinese Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jccs.70040","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Tumor markers, produced due to genetic alterations, are vital for cancer detection, diagnosis, treatment, and prognosis. Quantum dots (QDs), a novel luminescent nanomaterial, exhibit unique chemical and optical properties. Integrating QDs with biosensing technology enables highly sensitive and selective detection of target molecules, offering significant potential in biomedicine. This study developed a g-CNQDs-Apt/WS2/Fe3O4 magnetically separated fluorescent aptasensor based on fluorescence resonance energy transfer (FRET) for detecting the tumor marker mucin 1 (MUC1). Magnetic separation enhanced fluorescence recovery, reduced background interference, and improved the linear detection range for MUC1. The system demonstrated a strong linear correlation (R2 = 0.9926) between MUC1 concentration and fluorescence recovery, with a detection limit of 0.89 ng/mL, relative standard deviations of 3.24%–4.68%, and recoveries of 94.99%–112.39%. These findings provide valuable insights for developing fluorescent aptasensors for other tumor markers and biomedical targets.
期刊介绍:
The Journal of the Chinese Chemical Society was founded by The Chemical Society Located in Taipei in 1954, and is the oldest general chemistry journal in Taiwan. It is strictly peer-reviewed and welcomes review articles, full papers, notes and communications written in English. The scope of the Journal of the Chinese Chemical Society covers all major areas of chemistry: organic chemistry, inorganic chemistry, analytical chemistry, biochemistry, physical chemistry, and materials science.