{"title":"Probabilistic Vector Machines","authors":"A. Pedro Duarte Silva","doi":"10.1016/j.cor.2025.107203","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a novel Support Vector Machine (SVM) methodology for finding accurate probabilities of class memberships in supervised classification problems. Classical SVMs do not complement their class predictions with reliable confidence measures for each class assignment. For two-class problems this problem can be overcome by combining a sequence of weighted SVMs predictions into consistent class probabilities. In this work we show how a smart use of mathematical programming models can be used to extend this approach to the general multi-class classification problem. Previous attempts to tackle this problem either do not scale well with the number of different classes, or rely on sub-optimal partition strategies. Numerical experiments reveal the good scaling properties of the proposal, and the relative advantages of its class probability estimates over alternative approaches.</div></div>","PeriodicalId":10542,"journal":{"name":"Computers & Operations Research","volume":"183 ","pages":"Article 107203"},"PeriodicalIF":4.3000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Operations Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030505482500231X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a novel Support Vector Machine (SVM) methodology for finding accurate probabilities of class memberships in supervised classification problems. Classical SVMs do not complement their class predictions with reliable confidence measures for each class assignment. For two-class problems this problem can be overcome by combining a sequence of weighted SVMs predictions into consistent class probabilities. In this work we show how a smart use of mathematical programming models can be used to extend this approach to the general multi-class classification problem. Previous attempts to tackle this problem either do not scale well with the number of different classes, or rely on sub-optimal partition strategies. Numerical experiments reveal the good scaling properties of the proposal, and the relative advantages of its class probability estimates over alternative approaches.
期刊介绍:
Operations research and computers meet in a large number of scientific fields, many of which are of vital current concern to our troubled society. These include, among others, ecology, transportation, safety, reliability, urban planning, economics, inventory control, investment strategy and logistics (including reverse logistics). Computers & Operations Research provides an international forum for the application of computers and operations research techniques to problems in these and related fields.