Probabilistic Vector Machines

IF 4.3 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
A. Pedro Duarte Silva
{"title":"Probabilistic Vector Machines","authors":"A. Pedro Duarte Silva","doi":"10.1016/j.cor.2025.107203","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a novel Support Vector Machine (SVM) methodology for finding accurate probabilities of class memberships in supervised classification problems. Classical SVMs do not complement their class predictions with reliable confidence measures for each class assignment. For two-class problems this problem can be overcome by combining a sequence of weighted SVMs predictions into consistent class probabilities. In this work we show how a smart use of mathematical programming models can be used to extend this approach to the general multi-class classification problem. Previous attempts to tackle this problem either do not scale well with the number of different classes, or rely on sub-optimal partition strategies. Numerical experiments reveal the good scaling properties of the proposal, and the relative advantages of its class probability estimates over alternative approaches.</div></div>","PeriodicalId":10542,"journal":{"name":"Computers & Operations Research","volume":"183 ","pages":"Article 107203"},"PeriodicalIF":4.3000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Operations Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030505482500231X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a novel Support Vector Machine (SVM) methodology for finding accurate probabilities of class memberships in supervised classification problems. Classical SVMs do not complement their class predictions with reliable confidence measures for each class assignment. For two-class problems this problem can be overcome by combining a sequence of weighted SVMs predictions into consistent class probabilities. In this work we show how a smart use of mathematical programming models can be used to extend this approach to the general multi-class classification problem. Previous attempts to tackle this problem either do not scale well with the number of different classes, or rely on sub-optimal partition strategies. Numerical experiments reveal the good scaling properties of the proposal, and the relative advantages of its class probability estimates over alternative approaches.
概率向量机
本文提出了一种新的支持向量机(SVM)方法,用于寻找监督分类问题中类隶属度的准确概率。经典支持向量机没有为每个类分配提供可靠的置信度度量来补充它们的类预测。对于两类问题,可以通过将一系列加权支持向量机预测组合成一致的类概率来克服这个问题。在这项工作中,我们展示了如何巧妙地使用数学规划模型来将这种方法扩展到一般的多类分类问题。以前解决这个问题的尝试要么不能很好地扩展不同类的数量,要么依赖于次优分区策略。数值实验表明,该方法具有良好的标度特性,并且其类概率估计相对于其他方法具有相对优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Operations Research
Computers & Operations Research 工程技术-工程:工业
CiteScore
8.60
自引率
8.70%
发文量
292
审稿时长
8.5 months
期刊介绍: Operations research and computers meet in a large number of scientific fields, many of which are of vital current concern to our troubled society. These include, among others, ecology, transportation, safety, reliability, urban planning, economics, inventory control, investment strategy and logistics (including reverse logistics). Computers & Operations Research provides an international forum for the application of computers and operations research techniques to problems in these and related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信