A predictive analytics framework for early detection of production halts and quality issues

Arthur Matta , Luís Miguel Matos , Jorge Miguel Silva , Miguel Bastos Gomes , André Pilastri , Paulo Cortez
{"title":"A predictive analytics framework for early detection of production halts and quality issues","authors":"Arthur Matta ,&nbsp;Luís Miguel Matos ,&nbsp;Jorge Miguel Silva ,&nbsp;Miguel Bastos Gomes ,&nbsp;André Pilastri ,&nbsp;Paulo Cortez","doi":"10.1016/j.dajour.2025.100607","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a Machine Learning (ML) framework for an Ahead-of-Time (AoT) prediction of production halts and defects in particleboard manufacturing that uses only pre-production input variables. The proposed approach incorporates both Single-Task Learning (STL) and Multi-Task Learning (MTL) paradigms, which are evaluated across three production lines under two modeling strategies: Line-Specific Modeling (LSM) and Line-Agnostic Modeling (LAM). The experimental evaluation benchmarks a lightweight Logistic Regression (LogR) model against three Automated Machine Learning (AutoML) techniques: H2O AutoML, Ludwig, and a Bayesian-optimized Deep Feedforward Network (DFFN). Results show that the STL-LSM combination using LogR achieves the highest overall predictive performance. To enhance model interpretability, we apply two model-agnostic eXplainable Artificial Intelligence (XAI) techniques: SHapley Additive exPlanations (SHAP) and One-Dimensional Sensitivity Analysis (1DSA). These methods generate feature importance rankings across targets and production lines, which are evaluated using quantitative (normalized distance metrics) and qualitative measures (alignment with domain expert insights). The XAI findings reveal a strong consistency between SHAP and 1DSA, with 1DSA requiring a substantially lower computational cost. Moreover, the convergence between model-derived interpretations and expert feedback highlights the practical relevance of the proposed ML framework in supporting data-driven decision-making for particleboard production planning.</div></div>","PeriodicalId":100357,"journal":{"name":"Decision Analytics Journal","volume":"16 ","pages":"Article 100607"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Analytics Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772662225000633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a Machine Learning (ML) framework for an Ahead-of-Time (AoT) prediction of production halts and defects in particleboard manufacturing that uses only pre-production input variables. The proposed approach incorporates both Single-Task Learning (STL) and Multi-Task Learning (MTL) paradigms, which are evaluated across three production lines under two modeling strategies: Line-Specific Modeling (LSM) and Line-Agnostic Modeling (LAM). The experimental evaluation benchmarks a lightweight Logistic Regression (LogR) model against three Automated Machine Learning (AutoML) techniques: H2O AutoML, Ludwig, and a Bayesian-optimized Deep Feedforward Network (DFFN). Results show that the STL-LSM combination using LogR achieves the highest overall predictive performance. To enhance model interpretability, we apply two model-agnostic eXplainable Artificial Intelligence (XAI) techniques: SHapley Additive exPlanations (SHAP) and One-Dimensional Sensitivity Analysis (1DSA). These methods generate feature importance rankings across targets and production lines, which are evaluated using quantitative (normalized distance metrics) and qualitative measures (alignment with domain expert insights). The XAI findings reveal a strong consistency between SHAP and 1DSA, with 1DSA requiring a substantially lower computational cost. Moreover, the convergence between model-derived interpretations and expert feedback highlights the practical relevance of the proposed ML framework in supporting data-driven decision-making for particleboard production planning.

Abstract Image

用于早期发现生产停止和质量问题的预测分析框架
本研究提出了一个机器学习(ML)框架,用于提前(AoT)预测刨花板制造中的生产停止和缺陷,该框架仅使用生产前输入变量。所提出的方法结合了单任务学习(STL)和多任务学习(MTL)范式,并在两种建模策略下对三条生产线进行了评估:线特定建模(LSM)和线不可知论建模(LAM)。实验评估将轻量级逻辑回归(LogR)模型与三种自动机器学习(AutoML)技术(H2O AutoML, Ludwig和贝叶斯优化的深度前馈网络(DFFN))进行基准测试。结果表明,使用LogR的STL-LSM组合获得了最高的整体预测性能。为了提高模型的可解释性,我们采用了两种与模型无关的可解释人工智能(XAI)技术:SHapley加性解释(SHAP)和一维灵敏度分析(1DSA)。这些方法生成跨目标和生产线的特征重要性排名,使用定量(标准化距离度量)和定性度量(与领域专家的见解保持一致)对其进行评估。XAI的研究结果表明,SHAP和1DSA之间具有很强的一致性,而1DSA所需的计算成本要低得多。此外,模型衍生的解释和专家反馈之间的融合突出了所提出的ML框架在支持刨花板生产计划的数据驱动决策方面的实际相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信