{"title":"Investigation of chemicals with inconsistent Ames results using miniaturized Ames test systems","authors":"Csaba Boglári, Cécile Koelbert, Nicole Weiland-Jaeggi","doi":"10.1016/j.mrgentox.2025.503874","DOIUrl":null,"url":null,"abstract":"<div><div>The Ames assay is a bacterial reverse gene mutation test that has been a cornerstone of mutagenicity assessment. The emphasis now is on developing miniaturized versions of the Ames test in Petri dish to require less chemicals, reagents, and liver microsomal S9 fraction, thus reducing the number of test animals needed and to better comply with 3R principles. Miniaturized Ames assay versions promote high throughput testing of multiple samples during compound screening and facilitate the early exclusion of genotoxic agents during the product development process. Existing experimental data shed light on a high concordance between results gained with miniaturized Ames tests and the Petri dish-based method, yet further testing is required to corroborate these findings. We selected compounds with previously reported inconsistent outcomes and assessed their mutagenic potential using two miniaturized Ames assay formats, an agar-based 6-well plate test, and a liquid microplate fluctuation format assay. Investigation of dose-response curves of known mutagens with varying bacterial cell density inputs revealed that the sensitivity of the 6-well agar plate format might be increased by applying the right bacterial cell density. Our analysis indicates an overall good correlation between the results acquired with the two miniaturized Ames assay formats despite the conceptual characteristic differences in the assay paradigms. Furthermore, the miniaturized Ames assay formats could detect several chemicals as positive at lower concentrations than the Petri dish-based assay. Our findings indicate that the miniaturized Ames assay variations show promise as a reliable method for assessing chemical mutagenicity, while also aligning with environmentally friendly testing strategies. Finally, our results show that the miniaturized assays may exhibit increased sensitivity to impurities, potentially contributing to the observed discrepancies in the obtained results.</div></div>","PeriodicalId":18799,"journal":{"name":"Mutation research. Genetic toxicology and environmental mutagenesis","volume":"906 ","pages":"Article 503874"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation research. Genetic toxicology and environmental mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383571825000336","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Ames assay is a bacterial reverse gene mutation test that has been a cornerstone of mutagenicity assessment. The emphasis now is on developing miniaturized versions of the Ames test in Petri dish to require less chemicals, reagents, and liver microsomal S9 fraction, thus reducing the number of test animals needed and to better comply with 3R principles. Miniaturized Ames assay versions promote high throughput testing of multiple samples during compound screening and facilitate the early exclusion of genotoxic agents during the product development process. Existing experimental data shed light on a high concordance between results gained with miniaturized Ames tests and the Petri dish-based method, yet further testing is required to corroborate these findings. We selected compounds with previously reported inconsistent outcomes and assessed their mutagenic potential using two miniaturized Ames assay formats, an agar-based 6-well plate test, and a liquid microplate fluctuation format assay. Investigation of dose-response curves of known mutagens with varying bacterial cell density inputs revealed that the sensitivity of the 6-well agar plate format might be increased by applying the right bacterial cell density. Our analysis indicates an overall good correlation between the results acquired with the two miniaturized Ames assay formats despite the conceptual characteristic differences in the assay paradigms. Furthermore, the miniaturized Ames assay formats could detect several chemicals as positive at lower concentrations than the Petri dish-based assay. Our findings indicate that the miniaturized Ames assay variations show promise as a reliable method for assessing chemical mutagenicity, while also aligning with environmentally friendly testing strategies. Finally, our results show that the miniaturized assays may exhibit increased sensitivity to impurities, potentially contributing to the observed discrepancies in the obtained results.
期刊介绍:
Mutation Research - Genetic Toxicology and Environmental Mutagenesis (MRGTEM) publishes papers advancing knowledge in the field of genetic toxicology. Papers are welcomed in the following areas:
New developments in genotoxicity testing of chemical agents (e.g. improvements in methodology of assay systems and interpretation of results).
Alternatives to and refinement of the use of animals in genotoxicity testing.
Nano-genotoxicology, the study of genotoxicity hazards and risks related to novel man-made nanomaterials.
Studies of epigenetic changes in relation to genotoxic effects.
The use of structure-activity relationships in predicting genotoxic effects.
The isolation and chemical characterization of novel environmental mutagens.
The measurement of genotoxic effects in human populations, when accompanied by quantitative measurements of environmental or occupational exposures.
The application of novel technologies for assessing the hazard and risks associated with genotoxic substances (e.g. OMICS or other high-throughput approaches to genotoxicity testing).
MRGTEM is now accepting submissions for a new section of the journal: Current Topics in Genotoxicity Testing, that will be dedicated to the discussion of current issues relating to design, interpretation and strategic use of genotoxicity tests. This section is envisaged to include discussions relating to the development of new international testing guidelines, but also to wider topics in the field. The evaluation of contrasting or opposing viewpoints is welcomed as long as the presentation is in accordance with the journal''s aims, scope, and policies.