Yibo Dai , Li Xie , Peng Wu , Shecheng Cui , Linhai Ma
{"title":"Intrathread method orders based adaptive testing of concurrent objects","authors":"Yibo Dai , Li Xie , Peng Wu , Shecheng Cui , Linhai Ma","doi":"10.1016/j.scico.2025.103362","DOIUrl":null,"url":null,"abstract":"<div><div>Concurrent data structures or classes are designed to provide safe accesses and simultaneous updates by multiple threads to shared objects in a concurrent environment, with the goal of enhancing parallelism and throughput. However, testing concurrent objects poses significant challenges due to the potential explosion of concurrency test spaces, the variety of programming vulnerabilities, and the inherent nondeterminism of concurrent test executions. In this paper, we propose an Intrathread Method Orders based Adaptive Concurrency Testing (IMOACT) framework for concurrent objects. IMOACT can capture diverse behaviors of interthread method pairs through characterizing concurrent execution contexts with intrathread method orders. Moreover, IMOACT can adaptively optimize concurrent test executions by generating scheduling sequences based on the key scheduling points visited so far, streamlining test generation and execution organically across multiple tests. Experimental case studies with typical C/C++ concurrent classes demonstrate that IMOACT outperforms baseline approaches. On average, IMOACT promotes the effectiveness of detecting concurrency bugs by 65%, and achieves a speedup of 2.43x compared to the underlying state-of-the-art concurrency testing approach.</div></div>","PeriodicalId":49561,"journal":{"name":"Science of Computer Programming","volume":"248 ","pages":"Article 103362"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Computer Programming","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167642325001017","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Concurrent data structures or classes are designed to provide safe accesses and simultaneous updates by multiple threads to shared objects in a concurrent environment, with the goal of enhancing parallelism and throughput. However, testing concurrent objects poses significant challenges due to the potential explosion of concurrency test spaces, the variety of programming vulnerabilities, and the inherent nondeterminism of concurrent test executions. In this paper, we propose an Intrathread Method Orders based Adaptive Concurrency Testing (IMOACT) framework for concurrent objects. IMOACT can capture diverse behaviors of interthread method pairs through characterizing concurrent execution contexts with intrathread method orders. Moreover, IMOACT can adaptively optimize concurrent test executions by generating scheduling sequences based on the key scheduling points visited so far, streamlining test generation and execution organically across multiple tests. Experimental case studies with typical C/C++ concurrent classes demonstrate that IMOACT outperforms baseline approaches. On average, IMOACT promotes the effectiveness of detecting concurrency bugs by 65%, and achieves a speedup of 2.43x compared to the underlying state-of-the-art concurrency testing approach.
期刊介绍:
Science of Computer Programming is dedicated to the distribution of research results in the areas of software systems development, use and maintenance, including the software aspects of hardware design.
The journal has a wide scope ranging from the many facets of methodological foundations to the details of technical issues andthe aspects of industrial practice.
The subjects of interest to SCP cover the entire spectrum of methods for the entire life cycle of software systems, including
• Requirements, specification, design, validation, verification, coding, testing, maintenance, metrics and renovation of software;
• Design, implementation and evaluation of programming languages;
• Programming environments, development tools, visualisation and animation;
• Management of the development process;
• Human factors in software, software for social interaction, software for social computing;
• Cyber physical systems, and software for the interaction between the physical and the machine;
• Software aspects of infrastructure services, system administration, and network management.