Landmark-free automatic digital twin registration in robot-assisted partial nephrectomy using a generic end-to-end model.

IF 2.3 3区 医学 Q3 ENGINEERING, BIOMEDICAL
Kilian Chandelon, Alice Pitout, Mathieu Souchaud, Julie Desternes, Gaëlle Margue, Julien Peyras, Nicolas Bourdel, Jean-Christophe Bernhard, Adrien Bartoli
{"title":"Landmark-free automatic digital twin registration in robot-assisted partial nephrectomy using a generic end-to-end model.","authors":"Kilian Chandelon, Alice Pitout, Mathieu Souchaud, Julie Desternes, Gaëlle Margue, Julien Peyras, Nicolas Bourdel, Jean-Christophe Bernhard, Adrien Bartoli","doi":"10.1007/s11548-025-03473-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Augmented Reality in Minimally Invasive Surgery has made tremendous progress in organs including the liver and the uterus. The core problem of Augmented Reality is registration, where a preoperative patient's geometric digital twin must be aligned with the image of the surgical camera. The case of the kidney is yet unresolved, owing to the absence of anatomical landmarks visible in both the patient's digital twin and the surgical images.</p><p><strong>Methods: </strong>We propose a landmark-free approach to registration, which is particularly well-adapted to the kidney. The approach involves a generic kidney model and an end-to-end neural network, which we train with a proposed dataset to regress the registration directly from a surgical RGB image.</p><p><strong>Results: </strong>Experimental evaluation across four clinical cases demonstrates strong concordance with expert-labelled registration, despite anatomical and motion variability. The proposed method achieved an average tumour contour alignment error of <math><mrow><mn>7.3</mn> <mo>±</mo> <mn>4.1</mn></mrow> </math> mm in <math><mrow><mn>9.4</mn> <mo>±</mo> <mn>0.2</mn></mrow> </math> ms.</p><p><strong>Conclusion: </strong>This landmark-free registration approach meets the accuracy, speed and resource constraints required in clinical practice, making it a promising tool for Augmented Reality-Assisted Partial Nephrectomy.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-025-03473-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Augmented Reality in Minimally Invasive Surgery has made tremendous progress in organs including the liver and the uterus. The core problem of Augmented Reality is registration, where a preoperative patient's geometric digital twin must be aligned with the image of the surgical camera. The case of the kidney is yet unresolved, owing to the absence of anatomical landmarks visible in both the patient's digital twin and the surgical images.

Methods: We propose a landmark-free approach to registration, which is particularly well-adapted to the kidney. The approach involves a generic kidney model and an end-to-end neural network, which we train with a proposed dataset to regress the registration directly from a surgical RGB image.

Results: Experimental evaluation across four clinical cases demonstrates strong concordance with expert-labelled registration, despite anatomical and motion variability. The proposed method achieved an average tumour contour alignment error of 7.3 ± 4.1 mm in 9.4 ± 0.2 ms.

Conclusion: This landmark-free registration approach meets the accuracy, speed and resource constraints required in clinical practice, making it a promising tool for Augmented Reality-Assisted Partial Nephrectomy.

机器人辅助部分肾切除术中使用通用端到端模型的无标记自动数字孪生配准。
目的:增强现实技术在微创手术中的应用取得了巨大的进展,包括肝脏和子宫。增强现实的核心问题是注册,术前患者的几何数字孪生必须与手术相机的图像对齐。肾脏的病例尚未解决,因为在患者的数字双胞胎和手术图像中都没有可见的解剖标志。方法:我们提出了一种无地标的注册方法,特别适合肾脏。该方法涉及一个通用肾脏模型和一个端到端神经网络,我们使用一个提议的数据集训练该神经网络,以直接从手术RGB图像中回归配准。结果:四个临床病例的实验评估表明,尽管解剖和运动可变性,与专家标记注册有很强的一致性。该方法在9.4±0.2 ms内的平均肿瘤轮廓对齐误差为7.3±4.1 mm。结论:这种无地标的配准方法满足了临床实践中对准确性、速度和资源限制的要求,是增强现实辅助部分肾切除术的一种有前景的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Computer Assisted Radiology and Surgery
International Journal of Computer Assisted Radiology and Surgery ENGINEERING, BIOMEDICAL-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
5.90
自引率
6.70%
发文量
243
审稿时长
6-12 weeks
期刊介绍: The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信