Jiayi Tong, Jie Hu, George Hripcsak, Yang Ning, Yong Chen
{"title":"DisC<sup>2</sup>o-HD: Distributed causal inference with covariates shift for analyzing real-world high-dimensional data.","authors":"Jiayi Tong, Jie Hu, George Hripcsak, Yang Ning, Yong Chen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>High-dimensional healthcare data, such as electronic health records (EHR) data and claims data, present two primary challenges due to the large number of variables and the need to consolidate data from multiple clinical sites. The third key challenge is the potential existence of heterogeneity in terms of covariate shift. In this paper, we propose a distributed learning algorithm accounting for covariate shift to estimate the average treatment effect (ATE) for high-dimensional data, named DisC<sup>2</sup>o-HD. Leveraging the surrogate likelihood method, our method calibrates the estimates of the propensity score and outcome models to approximately attain the desired covariate balancing property, while accounting for the covariate shift across multiple clinical sites. We show that our distributed covariate balancing propensity score estimator can approximate the pooled estimator, which is obtained by pooling the data from multiple sites together. The proposed estimator remains consistent if either the propensity score model or the outcome regression model is correctly specified. The semiparametric efficiency bound is achieved when both the propensity score and the outcome models are correctly specified. We conduct simulation studies to demonstrate the performance of the proposed algorithm; additionally, we apply the algorithm to a real-world data set to present the readiness of implementation and validity.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"26 ","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12269483/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Learning Research","FirstCategoryId":"94","ListUrlMain":"","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
High-dimensional healthcare data, such as electronic health records (EHR) data and claims data, present two primary challenges due to the large number of variables and the need to consolidate data from multiple clinical sites. The third key challenge is the potential existence of heterogeneity in terms of covariate shift. In this paper, we propose a distributed learning algorithm accounting for covariate shift to estimate the average treatment effect (ATE) for high-dimensional data, named DisC2o-HD. Leveraging the surrogate likelihood method, our method calibrates the estimates of the propensity score and outcome models to approximately attain the desired covariate balancing property, while accounting for the covariate shift across multiple clinical sites. We show that our distributed covariate balancing propensity score estimator can approximate the pooled estimator, which is obtained by pooling the data from multiple sites together. The proposed estimator remains consistent if either the propensity score model or the outcome regression model is correctly specified. The semiparametric efficiency bound is achieved when both the propensity score and the outcome models are correctly specified. We conduct simulation studies to demonstrate the performance of the proposed algorithm; additionally, we apply the algorithm to a real-world data set to present the readiness of implementation and validity.
期刊介绍:
The Journal of Machine Learning Research (JMLR) provides an international forum for the electronic and paper publication of high-quality scholarly articles in all areas of machine learning. All published papers are freely available online.
JMLR has a commitment to rigorous yet rapid reviewing.
JMLR seeks previously unpublished papers on machine learning that contain:
new principled algorithms with sound empirical validation, and with justification of theoretical, psychological, or biological nature;
experimental and/or theoretical studies yielding new insight into the design and behavior of learning in intelligent systems;
accounts of applications of existing techniques that shed light on the strengths and weaknesses of the methods;
formalization of new learning tasks (e.g., in the context of new applications) and of methods for assessing performance on those tasks;
development of new analytical frameworks that advance theoretical studies of practical learning methods;
computational models of data from natural learning systems at the behavioral or neural level; or extremely well-written surveys of existing work.