{"title":"Structural Flexibility and Shape Similarity Contribute to Exclusive Functions of Certain Atg8 Isoforms in the Autophagy Process.","authors":"Alexey Rayevsky, Eliah Bulgakov, Mariia Stykhylias, Sergey Ozheredov, Svetlana Spivak, Yaroslav Blume","doi":"10.1002/minf.70004","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the abundance of systematically collected experimental data and facts, the multistep process of autophagy still contains many dark spots. One concerns the background selectivity of interactions between certain autophagy-related protein (ATG8) isoforms and their receptors/adaptors in plants during the autophagy process. By regulating phagophore initiation, expansion, and maturation, these proteins control the assembly of numerous autophagy proteins at this key docking platform. Bioinformatics analysis of human, yeast, and plant ATG8 amino acid sequences allow us to build a sequence tree of plant ATG8s, divided in three groups. We perform a structural study aimed at revealing some of the underlying reasons for the differences in the selectivity of ATG8 isoforms. A series of molecular dynamics (MD) simulations are performed to explain the stage-dependent functionality of ATG8. The conserved secondary structure and folding across all ATG8 proteins, resulting in nearly identical protein-protein interaction interfaces, makes this study particularly important and interesting. Recognizing the dual role of the LC3 interacting region (LIR) in autophagosome biogenesis and recruitment of the anchored selective autophagy receptor (SAR), we perform a mobility domain analysis. To this end, the amino acid sequence associated with the LIR docking site (LDS) interface is localized and subjected to root mean square deviation (RMSD)-based clustering analysis. Starting from Atg8-targeted protein-peptide docking, we attempt to identify conformational changes in the contact region of the corresponding adaptors and receptors involved in the common biogenesis events in autophagy. For the molecular dynamics, we select three representatives, sharing common patterns with other members of the groups. The resulting ATG8-peptide complexes display a significant preference for binding specific partners by different ATG8 isotypes.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":"44 7","pages":"e202500025"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.70004","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the abundance of systematically collected experimental data and facts, the multistep process of autophagy still contains many dark spots. One concerns the background selectivity of interactions between certain autophagy-related protein (ATG8) isoforms and their receptors/adaptors in plants during the autophagy process. By regulating phagophore initiation, expansion, and maturation, these proteins control the assembly of numerous autophagy proteins at this key docking platform. Bioinformatics analysis of human, yeast, and plant ATG8 amino acid sequences allow us to build a sequence tree of plant ATG8s, divided in three groups. We perform a structural study aimed at revealing some of the underlying reasons for the differences in the selectivity of ATG8 isoforms. A series of molecular dynamics (MD) simulations are performed to explain the stage-dependent functionality of ATG8. The conserved secondary structure and folding across all ATG8 proteins, resulting in nearly identical protein-protein interaction interfaces, makes this study particularly important and interesting. Recognizing the dual role of the LC3 interacting region (LIR) in autophagosome biogenesis and recruitment of the anchored selective autophagy receptor (SAR), we perform a mobility domain analysis. To this end, the amino acid sequence associated with the LIR docking site (LDS) interface is localized and subjected to root mean square deviation (RMSD)-based clustering analysis. Starting from Atg8-targeted protein-peptide docking, we attempt to identify conformational changes in the contact region of the corresponding adaptors and receptors involved in the common biogenesis events in autophagy. For the molecular dynamics, we select three representatives, sharing common patterns with other members of the groups. The resulting ATG8-peptide complexes display a significant preference for binding specific partners by different ATG8 isotypes.
期刊介绍:
Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010.
Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation.
The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.