Emma Svensson, Emma Granqvist, Tomas Bastys, Christos Kannas, Mikhail Kabeshov, Samuel Genheden, Ola Engkvist, Thierry Kogej
{"title":"Network Analysis of the Organic Chemistry in Patents, Literature, and Pharmaceutical Industry.","authors":"Emma Svensson, Emma Granqvist, Tomas Bastys, Christos Kannas, Mikhail Kabeshov, Samuel Genheden, Ola Engkvist, Thierry Kogej","doi":"10.1002/minf.202500011","DOIUrl":null,"url":null,"abstract":"<p><p>Chemical reactions can be connected in large networks such as knowledge graphs. In this way, prior work has been able to draw meaningful conclusions about the properties and structures involved in organic chemistry reactions. However, the research has focused on public sources of organic synthesis that might lack the intricate details of the synthetic routes used in in-house drug discovery. In this work, previous analyses are expanded to also include an in-house electronic lab notebook (ELN) source, such that we can compare it to knowledge graphs that were constructed from US Patent and Trademark Office (USPTO) and Reaxys. We found that the Reaxys knowledge graph is the most interconnected and has the largest proportion of nodes belonging to the core, whereas the USPTO is much less connected and only has a small core. The ELN knowledge graph falls between these extremes in connectivity and it does not have any core. The hub molecules of ELN and USPTO are most similar, primarily represented by small, organic building blocks. We hypothesize that these differences can be attributed to the different origins of the data in the three sources. We discuss what impact this might have on synthesis prediction modelling.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":"44 7","pages":"e202500011"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12273192/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202500011","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Chemical reactions can be connected in large networks such as knowledge graphs. In this way, prior work has been able to draw meaningful conclusions about the properties and structures involved in organic chemistry reactions. However, the research has focused on public sources of organic synthesis that might lack the intricate details of the synthetic routes used in in-house drug discovery. In this work, previous analyses are expanded to also include an in-house electronic lab notebook (ELN) source, such that we can compare it to knowledge graphs that were constructed from US Patent and Trademark Office (USPTO) and Reaxys. We found that the Reaxys knowledge graph is the most interconnected and has the largest proportion of nodes belonging to the core, whereas the USPTO is much less connected and only has a small core. The ELN knowledge graph falls between these extremes in connectivity and it does not have any core. The hub molecules of ELN and USPTO are most similar, primarily represented by small, organic building blocks. We hypothesize that these differences can be attributed to the different origins of the data in the three sources. We discuss what impact this might have on synthesis prediction modelling.
期刊介绍:
Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010.
Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation.
The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.