Joanna Krawczyk, William O'Connor, Pedro Vendramini, Mareike Schell, Kiran J Biddinger, Matt Kanke, George Pengo, Ivana Semova, Tiffany Fougeray, Marcia Haigis, Krishna G Aragam, Wouter H Lamers, Linus T Tsai, Praveen Sethupathy, Sudha B Biddinger
{"title":"The Diabetes Gene Tcf7l2 Organizes Gene Expression in the Liver and Regulates Amino Acid Metabolism.","authors":"Joanna Krawczyk, William O'Connor, Pedro Vendramini, Mareike Schell, Kiran J Biddinger, Matt Kanke, George Pengo, Ivana Semova, Tiffany Fougeray, Marcia Haigis, Krishna G Aragam, Wouter H Lamers, Linus T Tsai, Praveen Sethupathy, Sudha B Biddinger","doi":"10.1016/j.molmet.2025.102208","DOIUrl":null,"url":null,"abstract":"<p><p>TCF7L2 harbors the strongest genetic association with diabetes identified thus far. However, its function in liver has remained unclear. Here, we find that liver-specific deletion Tcf7l2 has little effect on plasma glucose, but disrupts hepatic zonation. That is, in the normal liver, many genes show gradients of expression across the liver lobule; in the absence of Tcf7l2, these gradients collapse. One major consequence is the disorganization of glutamine metabolism, with a loss of the glutamine production program, ectopic expression of the glutamine consumption program, and a decrease in glutamine levels. In parallel, metabolomic profiling shows glutamine to be the most significantly decreased metabolite in the plasma of individuals harboring the rs7903146 variant in TCF7L2. Taken together, these data indicate that hepatic TCF7L2 has a secondary role in glycemic control, but a primary role in maintaining transcriptional architecture and glutamine homeostasis.</p>","PeriodicalId":18765,"journal":{"name":"Molecular Metabolism","volume":" ","pages":"102208"},"PeriodicalIF":7.0000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.molmet.2025.102208","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
TCF7L2 harbors the strongest genetic association with diabetes identified thus far. However, its function in liver has remained unclear. Here, we find that liver-specific deletion Tcf7l2 has little effect on plasma glucose, but disrupts hepatic zonation. That is, in the normal liver, many genes show gradients of expression across the liver lobule; in the absence of Tcf7l2, these gradients collapse. One major consequence is the disorganization of glutamine metabolism, with a loss of the glutamine production program, ectopic expression of the glutamine consumption program, and a decrease in glutamine levels. In parallel, metabolomic profiling shows glutamine to be the most significantly decreased metabolite in the plasma of individuals harboring the rs7903146 variant in TCF7L2. Taken together, these data indicate that hepatic TCF7L2 has a secondary role in glycemic control, but a primary role in maintaining transcriptional architecture and glutamine homeostasis.
期刊介绍:
Molecular Metabolism is a leading journal dedicated to sharing groundbreaking discoveries in the field of energy homeostasis and the underlying factors of metabolic disorders. These disorders include obesity, diabetes, cardiovascular disease, and cancer. Our journal focuses on publishing research driven by hypotheses and conducted to the highest standards, aiming to provide a mechanistic understanding of energy homeostasis-related behavior, physiology, and dysfunction.
We promote interdisciplinary science, covering a broad range of approaches from molecules to humans throughout the lifespan. Our goal is to contribute to transformative research in metabolism, which has the potential to revolutionize the field. By enabling progress in the prognosis, prevention, and ultimately the cure of metabolic disorders and their long-term complications, our journal seeks to better the future of health and well-being.