Metabolomic Insights into Cross-Feeding Interactions Between Priestia megaterium PM and Pseudomonas fluorescens NO4: Unveiling Microbial Communication in Plant Growth-Promoting Rhizobacteria.
Nompumelelo R Sibanyoni, Lizelle A Piater, Pavel Kerchev, Ntakadzeni E Madala, Msizi I Mhlongo
{"title":"Metabolomic Insights into Cross-Feeding Interactions Between Priestia megaterium PM and Pseudomonas fluorescens NO4: Unveiling Microbial Communication in Plant Growth-Promoting Rhizobacteria.","authors":"Nompumelelo R Sibanyoni, Lizelle A Piater, Pavel Kerchev, Ntakadzeni E Madala, Msizi I Mhlongo","doi":"10.1007/s00248-025-02577-2","DOIUrl":null,"url":null,"abstract":"<p><p>Plant growth-promoting rhizobacteria (PGPR) engage in complex chemical exchange and signalling processes to enhance their survival, rhizosphere colonisation, and plant-beneficial roles. These microbial interactions are mediated by various chemical cues, including quorum sensing (QS) molecules, cyclic peptides, lipopeptides, nutrients, volatile organic compounds (VOC), and phytohormones. Cross-feeding, where one microorganism consumes metabolites produced by another, exemplifies direct chemical communication that shapes community dynamics and metabolic cooperation. However, the effects of cross-feeding among different PGPR strains remain insufficiently characterised. In this study, an LC-MS-based metabolomics approach, combined with multivariate statistical analysis, was employed to investigate metabolic perturbations induced by cross-feeding among PGPR strains. Growth curve analysis revealed that cross-fed PGPR exhibited growth patterns comparable to controls, with a slight reduction in biomass. Metabolic profiling indicated time-dependent shifts in the metabolic state of the cross-fed organisms, suggesting adaptive metabolic reprogramming in response to the donor-conditioned media. Multivariate analysis identified distinct metabolite alterations between cross-fed and control groups across different time points, highlighting the influence of nutrient availability on microbial growth dynamics. Notably, cross-fed groups showed decreased levels of primary metabolites such as amino acids and sugars alongside increased production of secondary metabolites, including surfactins, salicylic acid, and carboxylic acids. These secondary metabolites are implicated in plant growth promotion and defence, indicating their potential as natural biostimulants. The findings advance the understanding of PGPR interactions and chemical communication in the rhizosphere, supporting the development of sustainable agricultural practices by leveraging beneficial microbial interactions. Future research should explore these interactions within more complex microbial communities.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"88 1","pages":"76"},"PeriodicalIF":3.3000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12270958/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00248-025-02577-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plant growth-promoting rhizobacteria (PGPR) engage in complex chemical exchange and signalling processes to enhance their survival, rhizosphere colonisation, and plant-beneficial roles. These microbial interactions are mediated by various chemical cues, including quorum sensing (QS) molecules, cyclic peptides, lipopeptides, nutrients, volatile organic compounds (VOC), and phytohormones. Cross-feeding, where one microorganism consumes metabolites produced by another, exemplifies direct chemical communication that shapes community dynamics and metabolic cooperation. However, the effects of cross-feeding among different PGPR strains remain insufficiently characterised. In this study, an LC-MS-based metabolomics approach, combined with multivariate statistical analysis, was employed to investigate metabolic perturbations induced by cross-feeding among PGPR strains. Growth curve analysis revealed that cross-fed PGPR exhibited growth patterns comparable to controls, with a slight reduction in biomass. Metabolic profiling indicated time-dependent shifts in the metabolic state of the cross-fed organisms, suggesting adaptive metabolic reprogramming in response to the donor-conditioned media. Multivariate analysis identified distinct metabolite alterations between cross-fed and control groups across different time points, highlighting the influence of nutrient availability on microbial growth dynamics. Notably, cross-fed groups showed decreased levels of primary metabolites such as amino acids and sugars alongside increased production of secondary metabolites, including surfactins, salicylic acid, and carboxylic acids. These secondary metabolites are implicated in plant growth promotion and defence, indicating their potential as natural biostimulants. The findings advance the understanding of PGPR interactions and chemical communication in the rhizosphere, supporting the development of sustainable agricultural practices by leveraging beneficial microbial interactions. Future research should explore these interactions within more complex microbial communities.
期刊介绍:
The journal Microbial Ecology was founded more than 50 years ago by Dr. Ralph Mitchell, Gordon McKay Professor of Applied Biology at Harvard University in Cambridge, MA. The journal has evolved to become a premier location for the presentation of manuscripts that represent advances in the field of microbial ecology. The journal has become a dedicated international forum for the presentation of high-quality scientific investigations of how microorganisms interact with their environment, with each other and with their hosts. Microbial Ecology offers articles of original research in full paper and note formats, as well as brief reviews and topical position papers.