Deep learning-based automatic detection of pancreatic ductal adenocarcinoma ≤ 2 cm with high-resolution computed tomography: impact of the combination of tumor mass detection and indirect indicator evaluation.
{"title":"Deep learning-based automatic detection of pancreatic ductal adenocarcinoma ≤ 2 cm with high-resolution computed tomography: impact of the combination of tumor mass detection and indirect indicator evaluation.","authors":"Mizuki Ozawa, Miyuki Sone, Susumu Hijioka, Hidenobu Hara, Yusuke Wakatsuki, Toshihiro Ishihara, Chihiro Hattori, Ryo Hirano, Shintaro Ambo, Minoru Esaki, Masahiko Kusumoto, Yoshiyuki Matsui","doi":"10.1007/s11604-025-01836-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Detecting small pancreatic ductal adenocarcinomas (PDAC) is challenging owing to their difficulty in being identified as distinct tumor masses. This study assesses the diagnostic performance of a three-dimensional convolutional neural network for the automatic detection of small PDAC using both automatic tumor mass detection and indirect indicator evaluation.</p><p><strong>Materials and methods: </strong>High-resolution contrast-enhanced computed tomography (CT) scans from 181 patients diagnosed with PDAC (diameter ≤ 2 cm) between January 2018 and December 2023 were analyzed. The D/P ratio, which is the cross-sectional area of the MPD to that of the pancreatic parenchyma, was identified as an indirect indicator. A total of 204 patient data sets including 104 normal controls were analyzed for automatic tumor mass detection and D/P ratio evaluation. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were evaluated to detect tumor mass. The sensitivity of PDAC detection was compared with that of the software and radiologists, and tumor localization accuracy was validated against endoscopic ultrasonography (EUS) findings.</p><p><strong>Results: </strong>The sensitivity, specificity, PPV, and NPV for tumor mass detection were 77.0%, 76.0%, 75.5%, and 77.5%, respectively; for D/P ratio detection, 87.0%, 94.2%, 93.5%, and 88.3%, respectively; and for combined tumor mass and D/P ratio detections, 96.0%, 70.2%, 75.6%, and 94.8%, respectively. No significant difference was observed between the software's sensitivity and that of the radiologist's report (software, 96.0%; radiologist, 96.0%; p = 1). The concordance rate between software findings and EUS was 96.0%.</p><p><strong>Conclusions: </strong>Combining indirect indicator evaluation with tumor mass detection may improve small PDAC detection accuracy.</p>","PeriodicalId":14691,"journal":{"name":"Japanese Journal of Radiology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11604-025-01836-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Detecting small pancreatic ductal adenocarcinomas (PDAC) is challenging owing to their difficulty in being identified as distinct tumor masses. This study assesses the diagnostic performance of a three-dimensional convolutional neural network for the automatic detection of small PDAC using both automatic tumor mass detection and indirect indicator evaluation.
Materials and methods: High-resolution contrast-enhanced computed tomography (CT) scans from 181 patients diagnosed with PDAC (diameter ≤ 2 cm) between January 2018 and December 2023 were analyzed. The D/P ratio, which is the cross-sectional area of the MPD to that of the pancreatic parenchyma, was identified as an indirect indicator. A total of 204 patient data sets including 104 normal controls were analyzed for automatic tumor mass detection and D/P ratio evaluation. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were evaluated to detect tumor mass. The sensitivity of PDAC detection was compared with that of the software and radiologists, and tumor localization accuracy was validated against endoscopic ultrasonography (EUS) findings.
Results: The sensitivity, specificity, PPV, and NPV for tumor mass detection were 77.0%, 76.0%, 75.5%, and 77.5%, respectively; for D/P ratio detection, 87.0%, 94.2%, 93.5%, and 88.3%, respectively; and for combined tumor mass and D/P ratio detections, 96.0%, 70.2%, 75.6%, and 94.8%, respectively. No significant difference was observed between the software's sensitivity and that of the radiologist's report (software, 96.0%; radiologist, 96.0%; p = 1). The concordance rate between software findings and EUS was 96.0%.
Conclusions: Combining indirect indicator evaluation with tumor mass detection may improve small PDAC detection accuracy.
期刊介绍:
Japanese Journal of Radiology is a peer-reviewed journal, officially published by the Japan Radiological Society. The main purpose of the journal is to provide a forum for the publication of papers documenting recent advances and new developments in the field of radiology in medicine and biology. The scope of Japanese Journal of Radiology encompasses but is not restricted to diagnostic radiology, interventional radiology, radiation oncology, nuclear medicine, radiation physics, and radiation biology. Additionally, the journal covers technical and industrial innovations. The journal welcomes original articles, technical notes, review articles, pictorial essays and letters to the editor. The journal also provides announcements from the boards and the committees of the society. Membership in the Japan Radiological Society is not a prerequisite for submission. Contributions are welcomed from all parts of the world.