TFANet: A Time-Frequency Aware Network With Joint Entropy Coding for High-Ratio EEG Compression.

IF 4.5 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Xiangcun Wang, Xi Wu, Yuan Li, Xia Wu, Jiacai Zhang
{"title":"TFANet: A Time-Frequency Aware Network With Joint Entropy Coding for High-Ratio EEG Compression.","authors":"Xiangcun Wang, Xi Wu, Yuan Li, Xia Wu, Jiacai Zhang","doi":"10.1109/TBME.2025.3590270","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The transmission and storage of large-scale EEG data require high-ratio EEG compression. However, existing EEG compression methods struggle to achieve high compression efficiency while preserving reconstruction quality due to statistical redundancy and the loss of high-frequency information at extreme compression ratios.</p><p><strong>Methods: </strong>To address these limitations, we propose TFANet, a novel high-ratio EEG compression framework that integrates autoencoder learning with entropy coding to optimize the latent space distribution, effectively reducing redundancy and maximizing compression efficiency. To address the issue of high-frequency information loss in existing methods, which leads to significant detail degradation at high compression ratios, we propose the frequency attention block (FAB) and the time-frequency enhancement block (TFEB). FAB leverages fast fourier transform for global frequency-aware compression, while TFEB integrates discrete wavelet transform with channel attention to preserve fine-grained time-frequency features. By utilizing global frequency awareness to guide local feature extraction, our approach ensures more effective retention of critical EEG details.</p><p><strong>Results: </strong>Experiments on public EEG datasets show that TFANet achieves an unprecedented 333× compression ratio while maintaining superior reconstruction quality, significantly outperforming existing methods.</p><p><strong>Conclusion: </strong>These results highlight TFANet's potential for large-scale EEG applications, enabling efficient data transmission and storage while preserving critical neural information.</p><p><strong>Significance: </strong>TFANet reduces the storage and transmission costs of large-scale EEG data, laying the foundation for its practical applications in medical diagnosis and remote monitoring.</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2025.3590270","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The transmission and storage of large-scale EEG data require high-ratio EEG compression. However, existing EEG compression methods struggle to achieve high compression efficiency while preserving reconstruction quality due to statistical redundancy and the loss of high-frequency information at extreme compression ratios.

Methods: To address these limitations, we propose TFANet, a novel high-ratio EEG compression framework that integrates autoencoder learning with entropy coding to optimize the latent space distribution, effectively reducing redundancy and maximizing compression efficiency. To address the issue of high-frequency information loss in existing methods, which leads to significant detail degradation at high compression ratios, we propose the frequency attention block (FAB) and the time-frequency enhancement block (TFEB). FAB leverages fast fourier transform for global frequency-aware compression, while TFEB integrates discrete wavelet transform with channel attention to preserve fine-grained time-frequency features. By utilizing global frequency awareness to guide local feature extraction, our approach ensures more effective retention of critical EEG details.

Results: Experiments on public EEG datasets show that TFANet achieves an unprecedented 333× compression ratio while maintaining superior reconstruction quality, significantly outperforming existing methods.

Conclusion: These results highlight TFANet's potential for large-scale EEG applications, enabling efficient data transmission and storage while preserving critical neural information.

Significance: TFANet reduces the storage and transmission costs of large-scale EEG data, laying the foundation for its practical applications in medical diagnosis and remote monitoring.

TFANet:一种用于高比率脑电压缩的联合熵时频感知网络。
目的:大规模脑电数据的传输和存储需要高比率的脑电压缩。然而,现有的脑电图压缩方法由于统计冗余和极端压缩比下高频信息的丢失,难以在保持重构质量的同时实现高压缩效率。为了解决这些限制,我们提出了一种新的高比率脑电压缩框架TFANet,该框架将自编码器学习与熵编码相结合,以优化潜在空间分布,有效地减少冗余并最大化压缩效率。为了解决现有方法中高频信息丢失导致高压缩比下显著细节退化的问题,我们提出了频率注意块(FAB)和时频增强块(TFEB)。FAB利用快速傅立叶变换进行全局频率感知压缩,而TFEB将离散小波变换与信道关注集成在一起,以保持细粒度的时频特征。通过利用全局频率感知来指导局部特征提取,我们的方法确保更有效地保留关键的EEG细节。结果:在公开的EEG数据集上进行的实验表明,TFANet在保持较好的重构质量的同时,实现了前所未有的333x压缩比,显著优于现有方法。结论:这些结果突出了TFANet在大规模脑电图应用中的潜力,在保留关键神经信息的同时实现高效的数据传输和存储。意义:TFANet降低了大规模脑电数据的存储和传输成本,为其在医疗诊断和远程监测中的实际应用奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Biomedical Engineering
IEEE Transactions on Biomedical Engineering 工程技术-工程:生物医学
CiteScore
9.40
自引率
4.30%
发文量
880
审稿时长
2.5 months
期刊介绍: IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信