Yue Yang, Kairui Guo, Yonggang Zhang, Zhen Fang, Hua Lin, Mark Grosser, Deon Venter, Weihai Lu, Mengjia Wu, Dennis Cordato, Guangquan Zhang, Jie Lu
{"title":"MetaGeno: a chromosome-wise multi-task genomic framework for ischaemic stroke risk prediction.","authors":"Yue Yang, Kairui Guo, Yonggang Zhang, Zhen Fang, Hua Lin, Mark Grosser, Deon Venter, Weihai Lu, Mengjia Wu, Dennis Cordato, Guangquan Zhang, Jie Lu","doi":"10.1093/bib/bbaf348","DOIUrl":null,"url":null,"abstract":"<p><p>Current genome-wide association studies provide valuable insights into the genetic basis of ischaemic stroke (IS) risk. However, polygenic risk scores, the most widely used method for genetic risk prediction, have notable limitations due to their linear nature and inability to capture complex, nonlinear interactions among genetic variants. While deep neural networks offer advantages in modeling these complex relationships, the multifactorial nature of IS and the influence of modifiable risk factors present additional challenges for genetic risk prediction. To address these challenges, we propose a Chromosome-wise Multi-task Genomic (MetaGeno) framework that utilizes genetic data from IS and five related diseases. The framework includes a chromosome-based embedding layer to model local and global interactions among adjacent variants, enabling a biologically informed approach. Incorporating multi-disease learning further enhances predictive accuracy by leveraging shared genetic information. Among various sequential models tested, the Transformer demonstrated superior performance, and outperformed other machine learning models and PRS baselines, achieving an AUROC of 0.809 on the UK Biobank dataset. Risk stratification identified a two-fold increased stroke risk (HR, 2.14; 95% CI: 1.81-2.46) in the top 1% risk group, with a nearly five-fold increase in those with modifiable risk factors such as atrial fibrillation and hypertension. Finally, the model was validated on the diverse All of Us dataset (AUROC = 0.764), highlighting ancestry and population differences while demonstrating effective generalization. This study introduces a predictive framework that identifies high-risk individuals and informs targeted prevention strategies, offering potential as a clinical decision-support tool.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 4","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12271575/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf348","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Current genome-wide association studies provide valuable insights into the genetic basis of ischaemic stroke (IS) risk. However, polygenic risk scores, the most widely used method for genetic risk prediction, have notable limitations due to their linear nature and inability to capture complex, nonlinear interactions among genetic variants. While deep neural networks offer advantages in modeling these complex relationships, the multifactorial nature of IS and the influence of modifiable risk factors present additional challenges for genetic risk prediction. To address these challenges, we propose a Chromosome-wise Multi-task Genomic (MetaGeno) framework that utilizes genetic data from IS and five related diseases. The framework includes a chromosome-based embedding layer to model local and global interactions among adjacent variants, enabling a biologically informed approach. Incorporating multi-disease learning further enhances predictive accuracy by leveraging shared genetic information. Among various sequential models tested, the Transformer demonstrated superior performance, and outperformed other machine learning models and PRS baselines, achieving an AUROC of 0.809 on the UK Biobank dataset. Risk stratification identified a two-fold increased stroke risk (HR, 2.14; 95% CI: 1.81-2.46) in the top 1% risk group, with a nearly five-fold increase in those with modifiable risk factors such as atrial fibrillation and hypertension. Finally, the model was validated on the diverse All of Us dataset (AUROC = 0.764), highlighting ancestry and population differences while demonstrating effective generalization. This study introduces a predictive framework that identifies high-risk individuals and informs targeted prevention strategies, offering potential as a clinical decision-support tool.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.