A general form of covariate adjustment in clinical trials under covariate-adaptive randomization.

IF 2.4 2区 数学 Q2 BIOLOGY
Biometrika Pub Date : 2025-04-12 eCollection Date: 2025-01-01 DOI:10.1093/biomet/asaf029
Marlena S Bannick, Jun Shao, Jingyi Liu, Yu Du, Yanyao Yi, Ting Ye
{"title":"A general form of covariate adjustment in clinical trials under covariate-adaptive randomization.","authors":"Marlena S Bannick, Jun Shao, Jingyi Liu, Yu Du, Yanyao Yi, Ting Ye","doi":"10.1093/biomet/asaf029","DOIUrl":null,"url":null,"abstract":"<p><p>In randomized clinical trials, adjusting for baseline covariates can improve credibility and efficiency for demonstrating and quantifying treatment effects. This article studies the augmented inverse propensity weighted estimator, which is a general form of covariate adjustment that uses linear, generalized linear and nonparametric or machine learning models for the conditional mean of the response given covariates. Under covariate-adaptive randomization, we establish general theorems that show a complete picture of the asymptotic normality, efficiency gain and applicability of augmented inverse propensity weighted estimators. In particular, we provide for the first time a rigorous theoretical justification of using machine learning methods with cross-fitting for dependent data under covariate-adaptive randomization. Based on the general theorems, we offer insights on the conditions for guaranteed efficiency gain and universal applicability under different randomization schemes, which also motivate a joint calibration strategy using some constructed covariates after applying augmented inverse propensity weighted estimators.</p>","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":"112 3","pages":"asaf029"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12264724/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomet/asaf029","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In randomized clinical trials, adjusting for baseline covariates can improve credibility and efficiency for demonstrating and quantifying treatment effects. This article studies the augmented inverse propensity weighted estimator, which is a general form of covariate adjustment that uses linear, generalized linear and nonparametric or machine learning models for the conditional mean of the response given covariates. Under covariate-adaptive randomization, we establish general theorems that show a complete picture of the asymptotic normality, efficiency gain and applicability of augmented inverse propensity weighted estimators. In particular, we provide for the first time a rigorous theoretical justification of using machine learning methods with cross-fitting for dependent data under covariate-adaptive randomization. Based on the general theorems, we offer insights on the conditions for guaranteed efficiency gain and universal applicability under different randomization schemes, which also motivate a joint calibration strategy using some constructed covariates after applying augmented inverse propensity weighted estimators.

协变量自适应随机化下临床试验中协变量调整的一般形式。
在随机临床试验中,调整基线协变量可以提高证明和量化治疗效果的可信度和效率。本文研究了增广逆倾向加权估计量,它是协变量调整的一种一般形式,它使用线性、广义线性和非参数或机器学习模型对给定协变量响应的条件均值进行调整。在协变量自适应随机化条件下,我们建立了一些普遍定理,这些定理完整地展示了增广逆倾向加权估计的渐近正态性、效率增益和适用性。特别是,我们首次为在协变量自适应随机化下使用具有交叉拟合的依赖数据的机器学习方法提供了严格的理论依据。在一般定理的基础上,我们给出了在不同随机化方案下保证效率增益和普遍适用性的条件,并激发了在使用增广逆倾向加权估计量后使用一些构造协变量的联合校准策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biometrika
Biometrika 生物-生物学
CiteScore
5.50
自引率
3.70%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信