Statistical Validation of Multivariate Treatment Effects in Longitudinal Study Designs

IF 2.1 4区 化学 Q1 SOCIAL WORK
Torfinn Støve Madssen, Age Smilde, Jose Camacho, Anders Hagen Jarmund, Johan Westerhuis, Guro F. Giskeødegård
{"title":"Statistical Validation of Multivariate Treatment Effects in Longitudinal Study Designs","authors":"Torfinn Støve Madssen,&nbsp;Age Smilde,&nbsp;Jose Camacho,&nbsp;Anders Hagen Jarmund,&nbsp;Johan Westerhuis,&nbsp;Guro F. Giskeødegård","doi":"10.1002/cem.70044","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Multivariate extensions of repeated measures linear mixed models, such as repeated measures ANOVA simultaneous component analysis (RM-ASCA+) and linear mixed model-principal component analysis (LiMM-PCA), can be used for analyzing longitudinal studies with multivariate outcomes. However, there are no gold standards to assess the statistical validation of the observed effects of such models. Using real and simulated data, we here perform an empirical comparison of different strategies for assessing statistical significance in these frameworks: permutation tests, the global log-likelihood ratio (GLLR) test, and nonparametric bootstrap confidence intervals for the estimated multivariate effects. Power curves were used to examine the statistical power of the different tests in detecting time–treatment interactions with varying effect sizes. Our results show that both the permutation tests and the GLLR test can be used to statistically test the presence of a time–treatment interaction effect for multivariate data; however, the GLLR approach will be sensitive to the number of included principal components in LiMM-PCA. The bootstrap confidence interval approach generally shows good statistical power but has inflated Type 1 error rates under certain conditions. This makes it unsuitable for the purpose of hypothesis testing in its present implementation, although it may still be useful for exploratory purposes. Overall, our results show that the power of the tests for assessing multivariate effects in longitudinal studies is dependent on characteristics of the dataset, and it is important to be aware of the strengths and weaknesses of the different validation procedures.</p>\n </div>","PeriodicalId":15274,"journal":{"name":"Journal of Chemometrics","volume":"39 8","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemometrics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cem.70044","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL WORK","Score":null,"Total":0}
引用次数: 0

Abstract

Multivariate extensions of repeated measures linear mixed models, such as repeated measures ANOVA simultaneous component analysis (RM-ASCA+) and linear mixed model-principal component analysis (LiMM-PCA), can be used for analyzing longitudinal studies with multivariate outcomes. However, there are no gold standards to assess the statistical validation of the observed effects of such models. Using real and simulated data, we here perform an empirical comparison of different strategies for assessing statistical significance in these frameworks: permutation tests, the global log-likelihood ratio (GLLR) test, and nonparametric bootstrap confidence intervals for the estimated multivariate effects. Power curves were used to examine the statistical power of the different tests in detecting time–treatment interactions with varying effect sizes. Our results show that both the permutation tests and the GLLR test can be used to statistically test the presence of a time–treatment interaction effect for multivariate data; however, the GLLR approach will be sensitive to the number of included principal components in LiMM-PCA. The bootstrap confidence interval approach generally shows good statistical power but has inflated Type 1 error rates under certain conditions. This makes it unsuitable for the purpose of hypothesis testing in its present implementation, although it may still be useful for exploratory purposes. Overall, our results show that the power of the tests for assessing multivariate effects in longitudinal studies is dependent on characteristics of the dataset, and it is important to be aware of the strengths and weaknesses of the different validation procedures.

纵向研究设计中多变量治疗效果的统计验证
重复测量线性混合模型的多元扩展,如重复测量方差分析同时成分分析(RM-ASCA+)和线性混合模型-主成分分析(LiMM-PCA),可用于分析具有多元结果的纵向研究。然而,没有金标准来评估这些模型所观察到的效果的统计有效性。利用真实数据和模拟数据,我们在此对这些框架中评估统计显著性的不同策略进行了实证比较:排列检验、全局对数似然比(GLLR)检验和估计多元效应的非参数自举置信区间。功率曲线用于检验不同试验在检测具有不同效应量的时间处理相互作用时的统计功率。我们的研究结果表明,排列检验和GLLR检验都可以用于统计检验多变量数据的时间处理相互作用效应的存在;然而,GLLR方法将对LiMM-PCA中包含的主成分数量敏感。自举置信区间方法通常显示出良好的统计能力,但在某些条件下会使1型错误率膨胀。这使得它在目前的实现中不适合假设检验的目的,尽管它可能仍然对探索性目的有用。总体而言,我们的结果表明,纵向研究中评估多变量效应的测试的能力取决于数据集的特征,了解不同验证程序的优缺点是很重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemometrics
Journal of Chemometrics 化学-分析化学
CiteScore
5.20
自引率
8.30%
发文量
78
审稿时长
2 months
期刊介绍: The Journal of Chemometrics is devoted to the rapid publication of original scientific papers, reviews and short communications on fundamental and applied aspects of chemometrics. It also provides a forum for the exchange of information on meetings and other news relevant to the growing community of scientists who are interested in chemometrics and its applications. Short, critical review papers are a particularly important feature of the journal, in view of the multidisciplinary readership at which it is aimed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信