Analysis of Plug-In and Plug-Out of Converters in Droop Controlled DC Microgrid Systems

Shrivatsal Sharma;Vishnu Mahadeva Iyer;Shubham Dhiman;Subhashish Bhattacharya;Lan Yu;Tim Gernant
{"title":"Analysis of Plug-In and Plug-Out of Converters in Droop Controlled DC Microgrid Systems","authors":"Shrivatsal Sharma;Vishnu Mahadeva Iyer;Shubham Dhiman;Subhashish Bhattacharya;Lan Yu;Tim Gernant","doi":"10.1109/JESTIE.2025.3567963","DOIUrl":null,"url":null,"abstract":"This article presents methodologies to achieve seamless plug-in and plug-out of converters in droop-controlled dc microgrid (MG) systems. It is shown that the typical approach of precharging the converter to the nominal voltage before plugging it into a droop-controlled dc MG system can result in high transients in converter currents, which can trigger the system’s shutdown. New and effective methodologies are presented to achieve seamless plug-in and plug-out of a converter from the dc MG system. The seamless plug-in is achieved by controlling the reference voltage of the converter and plug-out is achieved by controlling the droop resistances. The proposed methodologies act as damping techniques to minimize the transients in converter currents. The methodologies are implemented using the conventional droop control and thus are simple to implement. An analytical model is developed for a generic dc MG system to analyze the performance of the system during a hot-swap of a converter. The model is also used to propose guidelines for controller design to achieve seamless plug-in and plug-out of a converter. Extensive experimental results on different configurations and operating points of MG systems are provided to validate the proposed methodologies.","PeriodicalId":100620,"journal":{"name":"IEEE Journal of Emerging and Selected Topics in Industrial Electronics","volume":"6 3","pages":"1140-1152"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Emerging and Selected Topics in Industrial Electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10990293/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents methodologies to achieve seamless plug-in and plug-out of converters in droop-controlled dc microgrid (MG) systems. It is shown that the typical approach of precharging the converter to the nominal voltage before plugging it into a droop-controlled dc MG system can result in high transients in converter currents, which can trigger the system’s shutdown. New and effective methodologies are presented to achieve seamless plug-in and plug-out of a converter from the dc MG system. The seamless plug-in is achieved by controlling the reference voltage of the converter and plug-out is achieved by controlling the droop resistances. The proposed methodologies act as damping techniques to minimize the transients in converter currents. The methodologies are implemented using the conventional droop control and thus are simple to implement. An analytical model is developed for a generic dc MG system to analyze the performance of the system during a hot-swap of a converter. The model is also used to propose guidelines for controller design to achieve seamless plug-in and plug-out of a converter. Extensive experimental results on different configurations and operating points of MG systems are provided to validate the proposed methodologies.
垂控直流微电网中变流器的插拔分析
本文介绍了在直流微电网(MG)系统中实现变压器无缝插拔的方法。结果表明,在将变换器插入下垂控制的直流MG系统之前,将变换器预充电到标称电压的典型方法会导致变换器电流的高瞬态,从而触发系统的关闭。提出了一种新的、有效的方法来实现直流MG系统中变换器的无缝插拔。通过控制转换器的参考电压实现无缝插拔,通过控制下垂电阻实现插拔。所提出的方法作为阻尼技术来最小化变换器电流中的瞬态。这些方法是使用传统的下垂控制来实现的,因此实现起来很简单。建立了通用直流MG系统的分析模型,用于分析变换器热插拔时系统的性能。该模型还用于为控制器设计提出指导方针,以实现转换器的无缝插拔。在不同的配置和不同的操作点上提供了大量的实验结果来验证所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信