{"title":"Replacing Copper With Aluminum in Hairpin Windings Motors Intended for Utility Cars","authors":"Gregorio Cutuli;Stefano Nuzzo;Davide Barater;Tianjie Zou;Shafigh Nategh;Tommaso Bertoncello","doi":"10.1109/JESTIE.2025.3546030","DOIUrl":null,"url":null,"abstract":"Along with efficiency and torque density, one of the key design objectives in today's traction electric machines is sustainability. This is especially true in the automotive segment, where a transition to electrification is occurring. A sustainable electric machine design implies the reduction of high environmental impact materials, such as copper for the windings or rare-earth materials for the permanent magnets. To this end, this study analyses the adoption of aluminum to replace the hairpin windings of an automotive 400 V interior permanent magnet machine, originally optimized with copper windings. First, a detailed optimization process for a copper-based motor is carried out, adopting a multiobjective genetic algorithm. Consequently, the efficiency map of the resulting design is compared to its aluminum-based version, which is directly obtained by changing the winding material. To validate the simulation and optimization trends, a copper-based prototype and its identical aluminum version are built and tested, and their efficiency maps are comprehensively compared and discussed.","PeriodicalId":100620,"journal":{"name":"IEEE Journal of Emerging and Selected Topics in Industrial Electronics","volume":"6 3","pages":"864-876"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Emerging and Selected Topics in Industrial Electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10904233/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Along with efficiency and torque density, one of the key design objectives in today's traction electric machines is sustainability. This is especially true in the automotive segment, where a transition to electrification is occurring. A sustainable electric machine design implies the reduction of high environmental impact materials, such as copper for the windings or rare-earth materials for the permanent magnets. To this end, this study analyses the adoption of aluminum to replace the hairpin windings of an automotive 400 V interior permanent magnet machine, originally optimized with copper windings. First, a detailed optimization process for a copper-based motor is carried out, adopting a multiobjective genetic algorithm. Consequently, the efficiency map of the resulting design is compared to its aluminum-based version, which is directly obtained by changing the winding material. To validate the simulation and optimization trends, a copper-based prototype and its identical aluminum version are built and tested, and their efficiency maps are comprehensively compared and discussed.