Safa Ben Atitallah;Maha Driss;Wadii Boulila;Anis Koubaa
{"title":"Securing Industrial IoT Environments: A Fuzzy Graph Attention Network for Robust Intrusion Detection","authors":"Safa Ben Atitallah;Maha Driss;Wadii Boulila;Anis Koubaa","doi":"10.1109/OJCS.2025.3587486","DOIUrl":null,"url":null,"abstract":"The Industrial Internet of Things (IIoT) faces significant cybersecurity threats due to its ever-changing network structures, diverse data sources, and inherent uncertainties, making robust intrusion detection crucial. Conventional machine learning methods and typical Graph Neural Networks (GNNs) often struggle to capture the complexity and uncertainty in IIoT network traffic, which hampers their effectiveness in detecting intrusions. To address these limitations, we propose the Fuzzy Graph Attention Network (FGATN), a novel intrusion detection framework that fuses fuzzy logic, graph attention mechanisms, and GNNs to deliver high accuracy and robustness in IIoT environments. FGATN introduces three core innovations: (1) fuzzy membership functions to explicitly model uncertainty and imprecision in traffic features; (2) fuzzy similarity-based graph construction with adaptive edge pruning to build meaningful graph topologies that reflect real-world communication patterns; and (3) an attention-guided fuzzy graph convolution mechanism that dynamically prioritizes reliable and task-relevant neighbors during message passing. We evaluate FGATN on three public intrusion datasets, Edge-IIoTSet, WSN-DS, and CIC-Malmem-2022, achieving accuracies of 99.07%, 99.20%, and 99.05%, respectively. It consistently outperforms state-of-the-art GNN (GCN, GraphSAGE, FGCN) and deep learning models (DNN, GRU, RobustCBL). Ablation studies confirm the essential roles of both fuzzy logic and attention mechanisms in boosting detection accuracy. Furthermore, FGATN demonstrates strong scalability, maintaining high performance across a range of varying graph sizes. These results highlight FGATN as a robust and scalable solution for next-generation IIoT intrusion detection systems.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"6 ","pages":"1065-1076"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11075530","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11075530/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The Industrial Internet of Things (IIoT) faces significant cybersecurity threats due to its ever-changing network structures, diverse data sources, and inherent uncertainties, making robust intrusion detection crucial. Conventional machine learning methods and typical Graph Neural Networks (GNNs) often struggle to capture the complexity and uncertainty in IIoT network traffic, which hampers their effectiveness in detecting intrusions. To address these limitations, we propose the Fuzzy Graph Attention Network (FGATN), a novel intrusion detection framework that fuses fuzzy logic, graph attention mechanisms, and GNNs to deliver high accuracy and robustness in IIoT environments. FGATN introduces three core innovations: (1) fuzzy membership functions to explicitly model uncertainty and imprecision in traffic features; (2) fuzzy similarity-based graph construction with adaptive edge pruning to build meaningful graph topologies that reflect real-world communication patterns; and (3) an attention-guided fuzzy graph convolution mechanism that dynamically prioritizes reliable and task-relevant neighbors during message passing. We evaluate FGATN on three public intrusion datasets, Edge-IIoTSet, WSN-DS, and CIC-Malmem-2022, achieving accuracies of 99.07%, 99.20%, and 99.05%, respectively. It consistently outperforms state-of-the-art GNN (GCN, GraphSAGE, FGCN) and deep learning models (DNN, GRU, RobustCBL). Ablation studies confirm the essential roles of both fuzzy logic and attention mechanisms in boosting detection accuracy. Furthermore, FGATN demonstrates strong scalability, maintaining high performance across a range of varying graph sizes. These results highlight FGATN as a robust and scalable solution for next-generation IIoT intrusion detection systems.