Deep TPS-PSO: Hybrid Deep Feature Extraction and Global Optimization for Precise 3D MRI Registration

Gayathri Ramasamy;Tripty Singh;Xiaohui Yuan;Ganesh R Naik
{"title":"Deep TPS-PSO: Hybrid Deep Feature Extraction and Global Optimization for Precise 3D MRI Registration","authors":"Gayathri Ramasamy;Tripty Singh;Xiaohui Yuan;Ganesh R Naik","doi":"10.1109/OJCS.2025.3586956","DOIUrl":null,"url":null,"abstract":"This article presents TPS-PSO, a hybrid deformable image registration framework integrating deep learning, non-linear transformation modeling, and global optimization for accurate inter-subject, intra-modality 3D brain MRI alignment. The method combines a 3D ResNet encoder to extract volumetric features, a Thin Plate Spline (TPS) model to capture smooth anatomical deformations, and Particle Swarm Optimization (PSO) to estimate transformation parameters efficiently without relying on gradients. Evaluated on the BraTS 2022 dataset, TPS-PSO achieved state-of-the-art performance with a Dice Similarity Coefficient (DSC) of 85.7%, Mutual Information (MI) of 1.23, Target Registration Error (TRE) of 3.8 mm, HD95 of 6.7 mm, and SSIM of 0.92. Comparative experiments against five recent baselines confirmed consistent improvements. Ablation studies and convergence analysis further validated the contribution of each module and the optimization strategy. The proposed framework generates topologically plausible deformation fields and shows strong potential for clinical and research applications in neuroimaging.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"6 ","pages":"1090-1099"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11072820","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11072820/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents TPS-PSO, a hybrid deformable image registration framework integrating deep learning, non-linear transformation modeling, and global optimization for accurate inter-subject, intra-modality 3D brain MRI alignment. The method combines a 3D ResNet encoder to extract volumetric features, a Thin Plate Spline (TPS) model to capture smooth anatomical deformations, and Particle Swarm Optimization (PSO) to estimate transformation parameters efficiently without relying on gradients. Evaluated on the BraTS 2022 dataset, TPS-PSO achieved state-of-the-art performance with a Dice Similarity Coefficient (DSC) of 85.7%, Mutual Information (MI) of 1.23, Target Registration Error (TRE) of 3.8 mm, HD95 of 6.7 mm, and SSIM of 0.92. Comparative experiments against five recent baselines confirmed consistent improvements. Ablation studies and convergence analysis further validated the contribution of each module and the optimization strategy. The proposed framework generates topologically plausible deformation fields and shows strong potential for clinical and research applications in neuroimaging.
深度TPS-PSO:用于精确3D MRI配准的混合深度特征提取和全局优化
本文介绍了TPS-PSO,一种混合可变形图像配准框架,集成了深度学习,非线性转换建模和全局优化,用于精确的主体间,模态内3D脑MRI对齐。该方法结合了三维ResNet编码器提取体积特征,薄板样条(TPS)模型捕获平滑解剖变形,粒子群优化(PSO)算法在不依赖梯度的情况下有效估计变换参数。在BraTS 2022数据集上进行评估,TPS-PSO达到了最先进的性能,骰子相似系数(DSC)为85.7%,互信息(MI)为1.23,目标配准误差(TRE)为3.8 mm, HD95为6.7 mm, SSIM为0.92。与最近五个基线的比较实验证实了持续的改善。消融研究和收敛分析进一步验证了各模块的贡献和优化策略。提出的框架产生拓扑上合理的变形场,并在神经影像学的临床和研究应用中显示出强大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信