Recurrent spiking neural networks as models of the entorhinal–hippocampal system for path integration: Grid cells and beyond

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ruilan Gao , Changjian Jiang , Yu Zhang
{"title":"Recurrent spiking neural networks as models of the entorhinal–hippocampal system for path integration: Grid cells and beyond","authors":"Ruilan Gao ,&nbsp;Changjian Jiang ,&nbsp;Yu Zhang","doi":"10.1016/j.neucom.2025.130814","DOIUrl":null,"url":null,"abstract":"<div><div>Grid cells in the mammalian medial entorhinal cortex (MEC) play a pivotal role in coding spatial information and integrating self-motion, functioning as a spatial metric through multiscale periodic representations. To investigate the properties and functions of these grid codes, mechanistic models employ continuous attractor neural networks (CANNs) with hand-tuned connectivity and dynamics, while normative models use recurrent neural networks (RNNs) for path integration where hexagonal grid patterns emerge spontaneously. In this work, we develop recurrent spiking neural networks (RSNNs) with biologically realistic structures for the path integration task, generating more biologically plausible representations resembling those in the entorhinal–hippocampal system. Leveraging various spiking neuron models including a novel adaptive neuron model, the RSNNs achieve accurate and generalizable path integration performance comparable to prior normative models. Besides, the RSNNs exhibit the inherent formation of multimodular hexagonal grid patterns with more biologically plausible grid scale ratios, as well as toroidal topology and low-dimensional neural dynamics consistent with biological observations. Through experiments and analyses, the path-integrating RSNNs offer new insights into the fundamental mechanisms underlying mammals’ exceptional navigation abilities, paving the way for future research in biologically inspired navigation systems.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"651 ","pages":"Article 130814"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225014869","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Grid cells in the mammalian medial entorhinal cortex (MEC) play a pivotal role in coding spatial information and integrating self-motion, functioning as a spatial metric through multiscale periodic representations. To investigate the properties and functions of these grid codes, mechanistic models employ continuous attractor neural networks (CANNs) with hand-tuned connectivity and dynamics, while normative models use recurrent neural networks (RNNs) for path integration where hexagonal grid patterns emerge spontaneously. In this work, we develop recurrent spiking neural networks (RSNNs) with biologically realistic structures for the path integration task, generating more biologically plausible representations resembling those in the entorhinal–hippocampal system. Leveraging various spiking neuron models including a novel adaptive neuron model, the RSNNs achieve accurate and generalizable path integration performance comparable to prior normative models. Besides, the RSNNs exhibit the inherent formation of multimodular hexagonal grid patterns with more biologically plausible grid scale ratios, as well as toroidal topology and low-dimensional neural dynamics consistent with biological observations. Through experiments and analyses, the path-integrating RSNNs offer new insights into the fundamental mechanisms underlying mammals’ exceptional navigation abilities, paving the way for future research in biologically inspired navigation systems.
循环尖峰神经网络作为内嗅-海马系统路径整合的模型:网格细胞及其他
哺乳动物内侧内嗅皮层(MEC)的网格细胞在空间信息编码和自我运动整合中起着关键作用,通过多尺度周期表征发挥空间度量的作用。为了研究这些网格代码的性质和功能,机制模型采用具有手动调谐连接和动态的连续吸引子神经网络(can),而规范模型使用递归神经网络(rnn)进行路径集成,其中六边形网格模式自发出现。在这项工作中,我们开发了具有生物现实结构的循环尖峰神经网络(rsnn),用于路径整合任务,产生更多类似于内嗅-海马系统的生物上似是而非的表征。利用各种尖峰神经元模型,包括一种新的自适应神经元模型,rsnn实现了与先前的规范模型相当的准确和可推广的路径集成性能。此外,rsnn具有多模六边形网格的固有结构,具有更合理的生物学网格比例,以及与生物学观察相一致的环形拓扑结构和低维神经动力学。通过实验和分析,整合路径的rsnn为哺乳动物卓越导航能力的基本机制提供了新的见解,为未来生物学启发的导航系统研究铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信