Marine anemone inspired cerium oxide doped nickel catalysts for enhanced seawater electrolysis efficiency

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Qi Luo , Xiaoyu Hao , Kewei Tang , Jinglun Guo , Jingyu Kang , Weihong Qi , Xuqing Liu
{"title":"Marine anemone inspired cerium oxide doped nickel catalysts for enhanced seawater electrolysis efficiency","authors":"Qi Luo ,&nbsp;Xiaoyu Hao ,&nbsp;Kewei Tang ,&nbsp;Jinglun Guo ,&nbsp;Jingyu Kang ,&nbsp;Weihong Qi ,&nbsp;Xuqing Liu","doi":"10.1016/j.jcis.2025.138430","DOIUrl":null,"url":null,"abstract":"<div><div>Seawater electrolysis offers a promising strategy for sustainable hydrogen production, yet inherent chloride ions (Cl<sup>−</sup>) in seawater induce electrode corrosion, posing a major challenge to this process. Herein, we developed a novel biomimetic catalyst by doping Cerium Oxide (CeO₂) into a nickel-based system and depositing it on carbon cloth (CeO₂/Ni/CC) inspired by the tentacle architecture of marine anemones. This design endows the catalyst with abundant active sites and high specific surface area, thereby significantly enhancing its seawater electrolysis performance. Notably, the incorporation of CeO₂ effectively inhibit the adsorption of Cl<sup>−</sup> and prevent the corrosion of the electrode. The optimized CeO₂/Ni/CC-2 catalyst exhibits outstanding OER activity and chloride corrosion resistance in both 1.0 M KOH and 0.6 M NaCl +1.0 M KOH electrolytes, achieving overpotentials of 214 mV and 220 mV at 10 mA cm<sup>−2</sup>, respectively. Tafel slope analysis and Nyquist impedance measurements further confirm that CeO₂ doping substantially improves reaction kinetics and charge transfer efficiency. Moreover, computational investigations employing density functional theory formalism (DFT) uncover that CeO₂ incorporation induces a blue shift in the d-band center of Ni, which optimizes the adsorption energies of oxygenated intermediates and enhances the adsorption capacity for chloride ions. This study not only introduces a new strategy for designing robust catalysts for seawater electrolysis but also lays a theoretical foundation for advancing clean energy technologies.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"700 ","pages":"Article 138430"},"PeriodicalIF":9.4000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725018211","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Seawater electrolysis offers a promising strategy for sustainable hydrogen production, yet inherent chloride ions (Cl) in seawater induce electrode corrosion, posing a major challenge to this process. Herein, we developed a novel biomimetic catalyst by doping Cerium Oxide (CeO₂) into a nickel-based system and depositing it on carbon cloth (CeO₂/Ni/CC) inspired by the tentacle architecture of marine anemones. This design endows the catalyst with abundant active sites and high specific surface area, thereby significantly enhancing its seawater electrolysis performance. Notably, the incorporation of CeO₂ effectively inhibit the adsorption of Cl and prevent the corrosion of the electrode. The optimized CeO₂/Ni/CC-2 catalyst exhibits outstanding OER activity and chloride corrosion resistance in both 1.0 M KOH and 0.6 M NaCl +1.0 M KOH electrolytes, achieving overpotentials of 214 mV and 220 mV at 10 mA cm−2, respectively. Tafel slope analysis and Nyquist impedance measurements further confirm that CeO₂ doping substantially improves reaction kinetics and charge transfer efficiency. Moreover, computational investigations employing density functional theory formalism (DFT) uncover that CeO₂ incorporation induces a blue shift in the d-band center of Ni, which optimizes the adsorption energies of oxygenated intermediates and enhances the adsorption capacity for chloride ions. This study not only introduces a new strategy for designing robust catalysts for seawater electrolysis but also lays a theoretical foundation for advancing clean energy technologies.

Abstract Image

海葵激发氧化铈掺杂镍催化剂提高海水电解效率
海水电解为可持续制氢提供了一种很有前途的策略,但海水中固有的氯离子(Cl−)会引起电极腐蚀,这对该工艺构成了重大挑战。在此,我们开发了一种新型仿生催化剂,通过将氧化铈(CeO₂)掺杂到镍基体系中,并将其沉积在碳布(CeO₂/Ni/CC)上,灵感来自海葵的触手结构。该设计使催化剂具有丰富的活性位点和较高的比表面积,从而显著提高了其海水电解性能。值得注意的是,ceo2的掺入有效地抑制了Cl -的吸附,防止了电极的腐蚀。优化后的ceo2 /Ni/CC-2催化剂在1.0 M KOH和0.6 M NaCl +1.0 M KOH电解液中均表现出良好的OER活性和耐氯化物腐蚀性能,在10 mA cm−2下的过电位分别为214 mV和220 mV。Tafel斜率分析和Nyquist阻抗测量进一步证实,掺杂CeO 2显著改善了反应动力学和电荷传递效率。此外,采用密度泛函理论(DFT)的计算研究发现,加入CeO 2会导致Ni的d波段中心发生蓝移,从而优化了含氧中间体的吸附能,增强了对氯离子的吸附能力。本研究不仅为设计强效的海水电解催化剂提供了新的思路,而且为推进清洁能源技术的发展奠定了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信