Dual-pulse arc modulation for enhanced microstructural homogeneity and mechanical isotropy in high-strength aluminum alloy additive manufacturing

IF 7.5 2区 材料科学 Q1 ENGINEERING, INDUSTRIAL
Shuwen Wang , Shujun Chen , Qiyue Zhao , Xiaohu Zhao , He Shan , Zhongmin Xiao , Wutong Ding , Tao Yuan
{"title":"Dual-pulse arc modulation for enhanced microstructural homogeneity and mechanical isotropy in high-strength aluminum alloy additive manufacturing","authors":"Shuwen Wang ,&nbsp;Shujun Chen ,&nbsp;Qiyue Zhao ,&nbsp;Xiaohu Zhao ,&nbsp;He Shan ,&nbsp;Zhongmin Xiao ,&nbsp;Wutong Ding ,&nbsp;Tao Yuan","doi":"10.1016/j.jmatprotec.2025.118986","DOIUrl":null,"url":null,"abstract":"<div><div>Fabricating high-strength Al-Zn-Mg-Cu alloy components via wire-arc directed energy deposition (DED) remains challenging due to inherent defects and anisotropic mechanical properties caused by uncontrolled heat input. This study introduces a dual-pulse modulated variable polarity arc additive manufacturing process as a fundamental advancement in addressing these limitations. By cyclically modulating the peak/base current ratio, the process induces periodic electromagnetic stirring and thermal oscillations in the molten pool, which fundamentally alters solidification dynamics. This innovation achieves a self-regulating cyclic microstructure of alternating fine equiaxed and columnar grains (aspect ratio reduced to 2.91), eliminates porosity (reduced to 0.65 %), and weakens the dominant &lt;001&gt; texture (pole density reduced from 17.47 to 9.88), thereby enhancing mechanical isotropy. Critically, the method refines grains by 50 % without altering nano-precipitate phases (η', 15–25 nm), preserving intrinsic precipitation strengthening. Post-deposition T6 heat treatment yields a tensile strength of 545.4 MPa, comparable to wrought counterparts, while retaining elongation (8.4 %). The work establishes a scalable, non-alloying strategy to suppress defects and anisotropy in high-strength aluminum alloys, advancing wire-arc DED toward aerospace-grade applications through precise arc energy modulation and molten pool control.</div></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"343 ","pages":"Article 118986"},"PeriodicalIF":7.5000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Processing Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924013625002766","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

Fabricating high-strength Al-Zn-Mg-Cu alloy components via wire-arc directed energy deposition (DED) remains challenging due to inherent defects and anisotropic mechanical properties caused by uncontrolled heat input. This study introduces a dual-pulse modulated variable polarity arc additive manufacturing process as a fundamental advancement in addressing these limitations. By cyclically modulating the peak/base current ratio, the process induces periodic electromagnetic stirring and thermal oscillations in the molten pool, which fundamentally alters solidification dynamics. This innovation achieves a self-regulating cyclic microstructure of alternating fine equiaxed and columnar grains (aspect ratio reduced to 2.91), eliminates porosity (reduced to 0.65 %), and weakens the dominant <001> texture (pole density reduced from 17.47 to 9.88), thereby enhancing mechanical isotropy. Critically, the method refines grains by 50 % without altering nano-precipitate phases (η', 15–25 nm), preserving intrinsic precipitation strengthening. Post-deposition T6 heat treatment yields a tensile strength of 545.4 MPa, comparable to wrought counterparts, while retaining elongation (8.4 %). The work establishes a scalable, non-alloying strategy to suppress defects and anisotropy in high-strength aluminum alloys, advancing wire-arc DED toward aerospace-grade applications through precise arc energy modulation and molten pool control.
高强度铝合金增材制造中增强组织均匀性和力学各向同性的双脉冲电弧调制
由于不受控制的热输入导致的固有缺陷和各向异性力学性能,通过线弧定向能沉积(DED)制造高强度Al-Zn-Mg-Cu合金部件仍然具有挑战性。本研究介绍了一种双脉冲调制变极性电弧增材制造工艺,作为解决这些限制的基本进步。通过循环调节峰基电流比,该工艺在熔池中引起周期性的电磁搅拌和热振荡,从根本上改变了凝固动力学。这一创新实现了细小等轴晶和柱状晶交替的自调节循环微观结构(长径比降低到2.91),消除了孔隙率(降低到0.65 %),并削弱了主导的<;001>;纹理(极密度从17.47降低到9.88),从而增强了机械各向同性。重要的是,该方法在不改变纳米析出相(η′,15-25 nm)的情况下,使晶粒细化了50 %,保持了本质的析出强化。沉积后T6热处理的抗拉强度为545.4 MPa,与变形后的强度相当,同时保持伸长率(8.4 %)。这项工作建立了一种可扩展的非合金化策略,以抑制高强度铝合金中的缺陷和各向异性,通过精确的电弧能量调制和熔池控制,将线弧DED推进到航空级应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Processing Technology
Journal of Materials Processing Technology 工程技术-材料科学:综合
CiteScore
12.60
自引率
4.80%
发文量
403
审稿时长
29 days
期刊介绍: The Journal of Materials Processing Technology covers the processing techniques used in manufacturing components from metals and other materials. The journal aims to publish full research papers of original, significant and rigorous work and so to contribute to increased production efficiency and improved component performance. Areas of interest to the journal include: • Casting, forming and machining • Additive processing and joining technologies • The evolution of material properties under the specific conditions met in manufacturing processes • Surface engineering when it relates specifically to a manufacturing process • Design and behavior of equipment and tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信