High-performance zinc-ion storage enabled by layer-structured hydrated ruthenium oxide cathode

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Xu Li , Yang Li , Liubing Dong
{"title":"High-performance zinc-ion storage enabled by layer-structured hydrated ruthenium oxide cathode","authors":"Xu Li ,&nbsp;Yang Li ,&nbsp;Liubing Dong","doi":"10.1016/j.jcis.2025.138449","DOIUrl":null,"url":null,"abstract":"<div><div>Transition metal oxides (TMOs) are typical host materials for Zn<sup>2+</sup> storage in aqueous zinc-based energy storage systems, whereas the strong electrostatic interaction between Zn<sup>2+</sup> and TMO hosts causes severe lattice distortion and structural instability of the TMOs, leading to poor Zn<sup>2+</sup>-storage performance. Herein, we report advanced TMO materials featured by weak lattice distortion and low-barrier ion-transport channels to realize high-performance Zn<sup>2+</sup> storage. Hydrated ruthenium oxide materials are synthesized, whose [RuO<sub>6</sub>] octahedra present weak intrinsic Jahn-Teller distortion with very slight compression/elongation of Ru<img>O bonds during Zn<sup>2+</sup> storage, and meanwhile, the interlayer water molecules not only dampen the charge transfer between inserted Zn<sup>2+</sup> and the lattice oxygen to weaken the electrostatic interaction between them but also induce Zn<sup>2+</sup> moving through low-energy-barrier integral rotation of octahedral [Zn(H<sub>2</sub>O)<sub>6</sub>]<sup>2+</sup> cluster to decrease Zn<sup>2+</sup> diffusion resistance in the nanochannels of the cathode material, synergistically enabling high-performance Zn<sup>2+</sup> storage. The cathode materials present a large capacity of 259 mAh/g, good rate performance and an exceptional cycling stability with an average capacity decay rate of only 0.00266 % per cycle over 10,000 cycles, remarkably superior to current TMO cathode materials. This work provides new inspiration for the design of TMO materials for high-performance zinc-based electrochemical energy storage.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"700 ","pages":"Article 138449"},"PeriodicalIF":9.4000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725018405","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Transition metal oxides (TMOs) are typical host materials for Zn2+ storage in aqueous zinc-based energy storage systems, whereas the strong electrostatic interaction between Zn2+ and TMO hosts causes severe lattice distortion and structural instability of the TMOs, leading to poor Zn2+-storage performance. Herein, we report advanced TMO materials featured by weak lattice distortion and low-barrier ion-transport channels to realize high-performance Zn2+ storage. Hydrated ruthenium oxide materials are synthesized, whose [RuO6] octahedra present weak intrinsic Jahn-Teller distortion with very slight compression/elongation of RuO bonds during Zn2+ storage, and meanwhile, the interlayer water molecules not only dampen the charge transfer between inserted Zn2+ and the lattice oxygen to weaken the electrostatic interaction between them but also induce Zn2+ moving through low-energy-barrier integral rotation of octahedral [Zn(H2O)6]2+ cluster to decrease Zn2+ diffusion resistance in the nanochannels of the cathode material, synergistically enabling high-performance Zn2+ storage. The cathode materials present a large capacity of 259 mAh/g, good rate performance and an exceptional cycling stability with an average capacity decay rate of only 0.00266 % per cycle over 10,000 cycles, remarkably superior to current TMO cathode materials. This work provides new inspiration for the design of TMO materials for high-performance zinc-based electrochemical energy storage.

Abstract Image

层状结构水合氧化钌阴极实现高性能锌离子存储
过渡金属氧化物(TMOs)是锌基水性储能系统中典型的Zn2+存储主体材料,但由于Zn2+与TMO主体之间强烈的静电相互作用,导致TMOs晶格畸变严重,结构不稳定,导致Zn2+存储性能不佳。在此,我们报道了具有弱晶格畸变和低势垒离子传输通道的先进TMO材料,以实现高性能的Zn2+存储。合成了水合氧化钌材料,其[RuO6]八面体在Zn2+储存过程中呈现弱的本征Jahn-Teller畸变,且RuO键的压缩/伸长非常小;层间水分子不仅抑制了插入的Zn2+与晶格氧之间的电荷转移,减弱了两者之间的静电相互作用,而且诱导Zn2+通过八面体[Zn(H2O)6]2+簇的低能垒积分旋转运动,降低了Zn2+在正极材料纳米通道中的扩散阻力,协同实现了Zn2+的高性能存储。该阴极材料具有259mah /g的大容量、良好的倍率性能和优异的循环稳定性,在10000次循环中,平均容量衰减率仅为0.00266%,明显优于现有的TMO阴极材料。本研究为高性能锌基电化学储能TMO材料的设计提供了新的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信