PFRNet: Progressive multi-scale feature fusion and refinement for RGB-D salient object detection

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zhengqian Feng , Wei Wang , Mingle Zhou , Wang Li , Yuan Gao , Jiachen Li , Gang Li
{"title":"PFRNet: Progressive multi-scale feature fusion and refinement for RGB-D salient object detection","authors":"Zhengqian Feng ,&nbsp;Wei Wang ,&nbsp;Mingle Zhou ,&nbsp;Wang Li ,&nbsp;Yuan Gao ,&nbsp;Jiachen Li ,&nbsp;Gang Li","doi":"10.1016/j.neucom.2025.130888","DOIUrl":null,"url":null,"abstract":"<div><div>RGB-D salient object detection, through the integration of multi-modal feature information, is adept at generating visually compelling saliency maps. Despite the advancement of various RGB-D salient object detection models, significant challenges such as detection omissions, inaccurate object localization, and false detections persist, particularly in multi-object environments or cluttered backgrounds. To address these issues, we introduce a Progressive Multi-Scale Feature Fusion and Refinement Network (PFRNet) based on an encoder–decoder architecture. During the feature encoding phase, we utilize a dual-stream Pyramid Vision Transformer as the encoder to extract RGB and depth features. Given that low-level features contain detailed spatial information while high-level features encapsulate semantic information, we adopt the Spatial Detail Aggregation Module (SDAM) and the Semantic Feature Enhancement Module (SFEM) to facilitate the cross-modal fusion of these features. In the feature decoding stage, we design a progressive decoder anchored by the Feature Focusing and Refinement Module (FFRM). This decoder incrementally concentrates and refines discriminative information from fused features at multiple scales, simultaneously eliminating redundant content to achieve precise prediction of salient objects. The experimental results show that PFRNet outperforms 14 existing RGB-D salient object detection models across six public datasets, while demonstrating the method’s strong generalization capabilities in RGB-T salient object detection tasks.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"650 ","pages":"Article 130888"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225015607","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

RGB-D salient object detection, through the integration of multi-modal feature information, is adept at generating visually compelling saliency maps. Despite the advancement of various RGB-D salient object detection models, significant challenges such as detection omissions, inaccurate object localization, and false detections persist, particularly in multi-object environments or cluttered backgrounds. To address these issues, we introduce a Progressive Multi-Scale Feature Fusion and Refinement Network (PFRNet) based on an encoder–decoder architecture. During the feature encoding phase, we utilize a dual-stream Pyramid Vision Transformer as the encoder to extract RGB and depth features. Given that low-level features contain detailed spatial information while high-level features encapsulate semantic information, we adopt the Spatial Detail Aggregation Module (SDAM) and the Semantic Feature Enhancement Module (SFEM) to facilitate the cross-modal fusion of these features. In the feature decoding stage, we design a progressive decoder anchored by the Feature Focusing and Refinement Module (FFRM). This decoder incrementally concentrates and refines discriminative information from fused features at multiple scales, simultaneously eliminating redundant content to achieve precise prediction of salient objects. The experimental results show that PFRNet outperforms 14 existing RGB-D salient object detection models across six public datasets, while demonstrating the method’s strong generalization capabilities in RGB-T salient object detection tasks.
PFRNet: RGB-D显著目标检测的渐进式多尺度特征融合与细化
RGB-D显著性目标检测通过多模态特征信息的融合,擅长生成视觉上引人注目的显著性地图。尽管各种RGB-D显著目标检测模型取得了进步,但仍然存在重大挑战,例如检测遗漏、不准确的目标定位和错误检测,特别是在多目标环境或杂乱背景中。为了解决这些问题,我们引入了一种基于编码器-解码器架构的渐进式多尺度特征融合与细化网络(PFRNet)。在特征编码阶段,我们利用双流金字塔视觉转换器作为编码器来提取RGB和深度特征。考虑到低层特征包含详细的空间信息,高层特征封装语义信息,我们采用了空间细节聚合模块(SDAM)和语义特征增强模块(SFEM)来促进这些特征的跨模态融合。在特征解码阶段,我们设计了一个以特征聚焦和细化模块(FFRM)为基础的递进解码器。该解码器从多个尺度的融合特征中逐步集中和细化判别信息,同时消除冗余内容,以实现对显著目标的精确预测。实验结果表明,PFRNet在6个公共数据集上优于14种现有的RGB-D显著目标检测模型,同时在RGB-T显著目标检测任务中展示了该方法强大的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信