Adaptive neural network finite-time optimal control for unmanned surface vehicle system

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jiaming Zhang , Wenjun Zhang , Shaocheng Tong
{"title":"Adaptive neural network finite-time optimal control for unmanned surface vehicle system","authors":"Jiaming Zhang ,&nbsp;Wenjun Zhang ,&nbsp;Shaocheng Tong","doi":"10.1016/j.neucom.2025.130906","DOIUrl":null,"url":null,"abstract":"<div><div>This article investigates the adaptive neural network (NN) optimal control design problem for unmanned surface vehicle (USV) systems by finite-time control theory. A new adaptive finite-time NN optimal control policy is developed, which is composed of a NN adaptive feed-forward controller and an optimal error feedback controller. The former is constructed by using backstepping recursive control design algorithm and the latter is designed by using adaptive dynamic programming (ADP) theory. It is demonstrated that developed finite-time optimal control strategy is able to ensure the USV system is stable in a finite-time interval and achieve optimal control performance. Moreover, it can handle the computational complexity problem existing in previous finite-time optimal control methods. Comparison and simulation results illustrate the validity and superiority of the developed optimal control concept.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"650 ","pages":"Article 130906"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225015784","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This article investigates the adaptive neural network (NN) optimal control design problem for unmanned surface vehicle (USV) systems by finite-time control theory. A new adaptive finite-time NN optimal control policy is developed, which is composed of a NN adaptive feed-forward controller and an optimal error feedback controller. The former is constructed by using backstepping recursive control design algorithm and the latter is designed by using adaptive dynamic programming (ADP) theory. It is demonstrated that developed finite-time optimal control strategy is able to ensure the USV system is stable in a finite-time interval and achieve optimal control performance. Moreover, it can handle the computational complexity problem existing in previous finite-time optimal control methods. Comparison and simulation results illustrate the validity and superiority of the developed optimal control concept.
无人水面车辆系统的自适应神经网络有限时间最优控制
本文利用有限时间控制理论研究了无人水面车辆系统的自适应神经网络最优控制设计问题。提出了一种新的自适应有限时间神经网络最优控制策略,该策略由神经网络自适应前馈控制器和最优误差反馈控制器组成。前者采用逆推递归控制设计算法构建,后者采用自适应动态规划(ADP)理论设计。研究结果表明,所开发的有限时间最优控制策略能够保证无人潜航器系统在有限时间内保持稳定,达到最优控制性能。此外,该方法还能较好地解决以往有限时间最优控制方法存在的计算复杂度问题。对比和仿真结果验证了所提出的最优控制概念的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信