Bayesian Optimal Experimental Design for Intelligent Data Collection in Material Flow Analysis

Jiankan Liao , Xun Huan , Daniel Cooper
{"title":"Bayesian Optimal Experimental Design for Intelligent Data Collection in Material Flow Analysis","authors":"Jiankan Liao ,&nbsp;Xun Huan ,&nbsp;Daniel Cooper","doi":"10.1016/j.procir.2025.02.128","DOIUrl":null,"url":null,"abstract":"<div><div>Material flow analyses (MFAs) are powerful tools for identifying and analyzing energy and material efficiency (resource efficiency) opportunities across a supply chain. MFAs are typically represented as directed graphs with key parameters including the mass of the material flows entering the system and the allocation of materials flowing through one node (typically representing a process or location) to other nodes in the system. Parametric uncertainty can hamper the credibility and usability of MFA results. Uncertainty may be reduced by collecting more data; however, an intelligent data acquisition strategy is needed given the limited resources available for completing a given MFA. In this article, we apply Bayesian optimal experimental design (BOED) derived from the Kullback-Leibler divergence to target the collection of high value data, which is then fed into a Bayesian framework to effectively reduce the MFA parametric uncertainty. The methodology is demonstrated using a case study on the 2012 U.S. steel sector. Bayesian inference is then used to validate the BOED results with data collected from the United States Geological Survey and the World Steel Association. This article’s methods allow efficient data collection to rapidly create MFAs with reduced and quantified parametric uncertainty, aiding decision makers in their efforts to pursue resource efficiency.</div></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":"135 ","pages":"Pages 175-180"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia CIRP","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212827125002574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Material flow analyses (MFAs) are powerful tools for identifying and analyzing energy and material efficiency (resource efficiency) opportunities across a supply chain. MFAs are typically represented as directed graphs with key parameters including the mass of the material flows entering the system and the allocation of materials flowing through one node (typically representing a process or location) to other nodes in the system. Parametric uncertainty can hamper the credibility and usability of MFA results. Uncertainty may be reduced by collecting more data; however, an intelligent data acquisition strategy is needed given the limited resources available for completing a given MFA. In this article, we apply Bayesian optimal experimental design (BOED) derived from the Kullback-Leibler divergence to target the collection of high value data, which is then fed into a Bayesian framework to effectively reduce the MFA parametric uncertainty. The methodology is demonstrated using a case study on the 2012 U.S. steel sector. Bayesian inference is then used to validate the BOED results with data collected from the United States Geological Survey and the World Steel Association. This article’s methods allow efficient data collection to rapidly create MFAs with reduced and quantified parametric uncertainty, aiding decision makers in their efforts to pursue resource efficiency.
物流分析中智能数据采集的贝叶斯优化实验设计
物料流分析(MFAs)是识别和分析供应链中能源和物料效率(资源效率)机会的强大工具。mfa通常用有向图表示,关键参数包括进入系统的物料流的质量,以及流经一个节点(通常代表一个过程或位置)到系统中其他节点的物料分配。参数的不确定性会影响MFA结果的可信度和可用性。收集更多的数据可以减少不确定性;然而,考虑到完成给定MFA的可用资源有限,需要一种智能数据采集策略。本文将基于Kullback-Leibler散度的贝叶斯最优实验设计(BOED)应用于高值数据的收集,然后将其输入贝叶斯框架,以有效降低MFA参数的不确定性。本文以2012年美国钢铁行业为例,对该方法进行了论证。然后使用贝叶斯推断与从美国地质调查局和世界钢铁协会收集的数据验证BOED结果。本文的方法允许有效的数据收集,以减少和量化的参数不确定性快速创建mfa,帮助决策者努力追求资源效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信