Thermal simulations in additive manufacturing using machine learning

Shradha Ghansiyal , Svenja Ehmsen , Matthias Klar , Jan C. Aurich
{"title":"Thermal simulations in additive manufacturing using machine learning","authors":"Shradha Ghansiyal ,&nbsp;Svenja Ehmsen ,&nbsp;Matthias Klar ,&nbsp;Jan C. Aurich","doi":"10.1016/j.procir.2024.12.029","DOIUrl":null,"url":null,"abstract":"<div><div>Thermal simulations are critical in additive manufacturing to ensure product quality, structural integrity, and optimized designs without the need for repeated real experiments. Conventionally, these simulations utilize numerical-based methods, which can often be time-consuming and resource-intensive, especially as the problem domain expands. To address these limitations, a data-driven framework is proposed. In this work, a methodology to train and validate machine learning-based models for thermal simulation tasks is outlined. For this purpose, an exemplary 2D simulation scenario in laser-based powder bed fusion is considered. Furthermore, the developed framework is utilized in parameter selection with the aim to obtain an energy-efficient process.</div></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":"135 ","pages":"Pages 344-349"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia CIRP","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212827125002847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Thermal simulations are critical in additive manufacturing to ensure product quality, structural integrity, and optimized designs without the need for repeated real experiments. Conventionally, these simulations utilize numerical-based methods, which can often be time-consuming and resource-intensive, especially as the problem domain expands. To address these limitations, a data-driven framework is proposed. In this work, a methodology to train and validate machine learning-based models for thermal simulation tasks is outlined. For this purpose, an exemplary 2D simulation scenario in laser-based powder bed fusion is considered. Furthermore, the developed framework is utilized in parameter selection with the aim to obtain an energy-efficient process.
使用机器学习的增材制造热模拟
热模拟在增材制造中至关重要,它可以确保产品质量、结构完整性和优化设计,而无需重复的真实实验。通常,这些模拟使用基于数值的方法,这通常是耗时和资源密集型的,特别是当问题域扩展时。为了解决这些限制,提出了一个数据驱动的框架。在这项工作中,概述了一种训练和验证用于热模拟任务的基于机器学习的模型的方法。为此,考虑了一个典型的基于激光的粉末床熔合的二维模拟场景。此外,将所开发的框架用于参数选择,以获得节能过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信