On Jeffreys's cardioid distribution

IF 1.6 3区 数学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Arthur Pewsey
{"title":"On Jeffreys's cardioid distribution","authors":"Arthur Pewsey","doi":"10.1016/j.csda.2025.108248","DOIUrl":null,"url":null,"abstract":"<div><div>The cardioid distribution, despite being one of the fundamental models for circular data, has received limited attention both methodologically and in terms of its implementation in R. To redress these shortcomings, published results on the model are summarized, corrected and extended, and the scope and limitations of the existing support for the model in R identified. A thorough investigation into the performance of trigonometric moment and maximum likelihood based approaches to point and interval estimation of the model's location and concentration parameters is presented, and goodness-of-fit techniques outlined. A suite of reliable R functions is provided for the model's practical application. The application of the proposed inferential methods and R functions is illustrated by an analysis of palaeocurrent cross-bed azimuths.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"213 ","pages":"Article 108248"},"PeriodicalIF":1.6000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947325001240","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The cardioid distribution, despite being one of the fundamental models for circular data, has received limited attention both methodologically and in terms of its implementation in R. To redress these shortcomings, published results on the model are summarized, corrected and extended, and the scope and limitations of the existing support for the model in R identified. A thorough investigation into the performance of trigonometric moment and maximum likelihood based approaches to point and interval estimation of the model's location and concentration parameters is presented, and goodness-of-fit techniques outlined. A suite of reliable R functions is provided for the model's practical application. The application of the proposed inferential methods and R functions is illustrated by an analysis of palaeocurrent cross-bed azimuths.
杰弗里斯的心脏分布
尽管心型分布是圆形数据的基本模型之一,但在方法上和在R中的实施方面都受到有限的关注。为了纠正这些缺点,对该模型的已发表结果进行了总结、修正和扩展,并确定了R中现有支持该模型的范围和局限性。深入研究了三角矩和基于最大似然的方法对模型的位置和浓度参数的点和区间估计的性能,并概述了拟合优度技术。为模型的实际应用提供了一套可靠的R函数。通过古水流交叉层方位角的分析,说明了所提出的推理方法和R函数的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Statistics & Data Analysis
Computational Statistics & Data Analysis 数学-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
167
审稿时长
60 days
期刊介绍: Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas: I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article. II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures. [...] III) Special Applications - [...] IV) Annals of Statistical Data Science [...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信