Solutions of (1+1) and (m+1)-dimensional time-fractional delay PDEs with the Hilfer derivative: Separable and invariant subspace methods

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
K.S. Priyendhu , P. Prakash , Stéphane Victor
{"title":"Solutions of (1+1) and (m+1)-dimensional time-fractional delay PDEs with the Hilfer derivative: Separable and invariant subspace methods","authors":"K.S. Priyendhu ,&nbsp;P. Prakash ,&nbsp;Stéphane Victor","doi":"10.1016/j.chaos.2025.116738","DOIUrl":null,"url":null,"abstract":"<div><div>The main aim of this work is to systematically present two analytical approaches that are known as (i) the separable method and (ii) the invariant subspace method to solve the scalar and coupled time-delay linear and nonlinear time-fractional PDEs with the Hilfer arbitrary-order derivative. Also, this work investigates how to compute different possible types of exact solutions for the <span><math><mi>k</mi></math></span>-component coupled <span><math><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensional time-delay time-fractional PDEs with the Hilfer arbitrary-order derivative through the invariant subspace method together with and without the linear space variable transformation. More precisely, we show the effectiveness and usefulness of the separable and invariant subspace methods to obtain various types of variable separable forms of exact solutions for the scalar and k-component coupled <span><math><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensional time-delay linear and nonlinear time-fractional heat equations with the Hilfer arbitrary-order derivative. In addition, we explicitly illustrated the importance of the invariant subspace method together with and without the linear space variable transformation to compute the variable separable forms of exact solutions for the 2-component coupled <span><math><mrow><mo>(</mo><mn>2</mn><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensional time-delay nonlinear time-fractional diffusion convection reaction systems with the Hilfer arbitrary-order derivative subject to suitable initial and boundary conditions. From this study, we notice that the Euler-gamma, trigonometric, exponential, three-parameter Mittag-Leffler, and polynomial functions are involved in the derived exact solutions. Further, we provide the comparative study of the discussed methods along with illustrative examples in the appropriate places as well as with the existing literature wherever possible.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":"Article 116738"},"PeriodicalIF":5.6000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925007519","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The main aim of this work is to systematically present two analytical approaches that are known as (i) the separable method and (ii) the invariant subspace method to solve the scalar and coupled time-delay linear and nonlinear time-fractional PDEs with the Hilfer arbitrary-order derivative. Also, this work investigates how to compute different possible types of exact solutions for the k-component coupled (m+1)-dimensional time-delay time-fractional PDEs with the Hilfer arbitrary-order derivative through the invariant subspace method together with and without the linear space variable transformation. More precisely, we show the effectiveness and usefulness of the separable and invariant subspace methods to obtain various types of variable separable forms of exact solutions for the scalar and k-component coupled (1+1)-dimensional time-delay linear and nonlinear time-fractional heat equations with the Hilfer arbitrary-order derivative. In addition, we explicitly illustrated the importance of the invariant subspace method together with and without the linear space variable transformation to compute the variable separable forms of exact solutions for the 2-component coupled (2+1)-dimensional time-delay nonlinear time-fractional diffusion convection reaction systems with the Hilfer arbitrary-order derivative subject to suitable initial and boundary conditions. From this study, we notice that the Euler-gamma, trigonometric, exponential, three-parameter Mittag-Leffler, and polynomial functions are involved in the derived exact solutions. Further, we provide the comparative study of the discussed methods along with illustrative examples in the appropriate places as well as with the existing literature wherever possible.
具有Hilfer导数的(1+1)和(m+1)维时间分数阶时滞偏微分方程的解:可分和不变子空间方法
本工作的主要目的是系统地提出两种解析方法,即(i)可分方法和(ii)不变子空间方法,用于求解具有Hilfer任意阶导数的标量和耦合时滞线性和非线性时间分数阶偏微分方程。此外,本文还研究了如何通过不变子空间方法计算具有Hilfer任意阶导数的k分量耦合(m+1)维时滞时间分数阶偏微分方程的不同可能类型的精确解,以及是否使用线性空间变量变换。更确切地说,我们证明了可分和不变子空间方法的有效性和实用性,以获得具有Hilfer任意阶导数的标量和k分量耦合(1+1)维时滞线性和非线性时间分数热方程的各种类型的可变可分形式的精确解。此外,我们明确地说明了在适当的初始条件和边界条件下,结合线性空间变量变换和不结合线性空间变量变换的不变子空间方法对于计算具有Hilfer任意阶导数的2分量耦合(2+1)维非线性时间分数扩散对流反应系统的变量可分精确解的重要性。从这项研究中,我们注意到欧拉-伽马、三角、指数、三参数Mittag-Leffler和多项式函数都涉及到导出的精确解。此外,我们提供了所讨论的方法的比较研究,并在适当的地方提供了说明性的例子,以及与现有文献的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信