{"title":"The integrable nonlocal nonlinear Schrödinger equation with oscillatory boundary conditions: Long-time asymptotics","authors":"Yan Rybalko , Dmitry Shepelsky , Shou-Fu Tian","doi":"10.1016/j.physd.2025.134820","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the Cauchy problem for the integrable nonlocal nonlinear Schrödinger equation <span><span><span><math><mrow><mi>i</mi><msub><mrow><mi>q</mi></mrow><mrow><mi>t</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>x</mi><mi>x</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><mn>2</mn><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mover><mrow><mi>q</mi></mrow><mrow><mo>̄</mo></mrow></mover><mrow><mo>(</mo><mo>−</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mo>,</mo></mrow></math></span></span></span>subject to the step-like initial data: <span><math><mrow><mi>q</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>→</mo><mn>0</mn></mrow></math></span> as <span><math><mrow><mi>x</mi><mo>→</mo><mo>−</mo><mi>∞</mi></mrow></math></span> and <span><math><mrow><mi>q</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>≃</mo><mi>A</mi><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>i</mi><mi>B</mi><mi>x</mi></mrow></msup></mrow></math></span> as <span><math><mrow><mi>x</mi><mo>→</mo><mi>∞</mi></mrow></math></span>, where <span><math><mrow><mi>A</mi><mo>></mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>B</mi><mo>∈</mo><mi>R</mi></mrow></math></span>. The goal is to study the long-time asymptotic behavior of the solution of this problem assuming that <span><math><mrow><mi>q</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mrow></math></span> is close, in a certain spectral sense, to the “step-like” function <span><math><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn><mo>,</mo><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mfenced><mrow><mtable><mtr><mtd><mn>0</mn><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>≤</mo><mi>R</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>A</mi><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>i</mi><mi>B</mi><mi>x</mi></mrow></msup><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>></mo><mi>R</mi><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></mrow></math></span> with <span><math><mrow><mi>R</mi><mo>></mo><mn>0</mn></mrow></math></span>. A special attention is paid to how <span><math><mrow><mi>B</mi><mo>≠</mo><mn>0</mn></mrow></math></span> affects the asymptotics.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"481 ","pages":"Article 134820"},"PeriodicalIF":2.7000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925002970","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the Cauchy problem for the integrable nonlocal nonlinear Schrödinger equation subject to the step-like initial data: as and as , where and . The goal is to study the long-time asymptotic behavior of the solution of this problem assuming that is close, in a certain spectral sense, to the “step-like” function with . A special attention is paid to how affects the asymptotics.
期刊介绍:
Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.