{"title":"Dual CNN for photovoltaic electroluminescence images microcrack detection","authors":"Khouloud Samrouth , Souha Nazir , Nader Bakir , Nadine Khodor","doi":"10.1016/j.array.2025.100442","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate detection of microcracks in photovoltaic (PV) cells is crucial for ensuring the efficiency and longevity of solar panels. This study proposes a dual convolutional neural network (Dual-CNN) architecture to enhance microcrack detection in electroluminescence (EL) PV images. By integrating shallow feature extraction with deep semantic analysis, the proposed model effectively captures both fine-grained local textures and high-level structural patterns, addressing the limitations of conventional single-stream CNN models that primarily focus on coarse-grained features. Experimental evaluations on an EL image dataset demonstrate that the Dual-CNN approach significantly improves defect localization and classification with an accuracy of 85.33%, a recall of 71.71% and an F1 score of 73.9%, paving the way for more robust and automated PV inspection systems in the solar energy sector.</div></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"27 ","pages":"Article 100442"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590005625000694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate detection of microcracks in photovoltaic (PV) cells is crucial for ensuring the efficiency and longevity of solar panels. This study proposes a dual convolutional neural network (Dual-CNN) architecture to enhance microcrack detection in electroluminescence (EL) PV images. By integrating shallow feature extraction with deep semantic analysis, the proposed model effectively captures both fine-grained local textures and high-level structural patterns, addressing the limitations of conventional single-stream CNN models that primarily focus on coarse-grained features. Experimental evaluations on an EL image dataset demonstrate that the Dual-CNN approach significantly improves defect localization and classification with an accuracy of 85.33%, a recall of 71.71% and an F1 score of 73.9%, paving the way for more robust and automated PV inspection systems in the solar energy sector.