{"title":"Weak Error on the densities for the Euler scheme of stable additive SDEs with Hölder drift","authors":"Mathis Fitoussi, Stéphane Menozzi","doi":"10.1016/j.spa.2025.104736","DOIUrl":null,"url":null,"abstract":"<div><div>We are interested in the Euler–Maruyama discretization of the SDE <span><span><span><math><mrow><mspace></mspace><mi>d</mi><msub><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>b</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>t</mi><mo>+</mo><mspace></mspace><mi>d</mi><msub><mrow><mi>Z</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>X</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo></mrow></math></span></span></span>where <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> is a symmetric isotropic <span><math><mi>d</mi></math></span>-dimensional <span><math><mi>α</mi></math></span>-stable process, <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>]</mo></mrow></mrow></math></span> and the drift <span><math><mrow><mi>b</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mfenced><mrow><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>]</mo></mrow><mo>,</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>β</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></mrow></mrow></mfenced></mrow></math></span>, <span><math><mrow><mi>β</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, is bounded and Hölder regular in space. Using an Euler scheme with a randomization of the time variable, we show that, denoting <span><math><mrow><mi>γ</mi><mo>≔</mo><mi>α</mi><mo>+</mo><mi>β</mi><mo>−</mo><mn>1</mn></mrow></math></span>, the weak error on densities related to this discretization converges at the rate <span><math><mrow><mi>γ</mi><mo>/</mo><mi>α</mi></mrow></math></span>.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"190 ","pages":"Article 104736"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925001796","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
We are interested in the Euler–Maruyama discretization of the SDE where is a symmetric isotropic -dimensional -stable process, and the drift , , is bounded and Hölder regular in space. Using an Euler scheme with a randomization of the time variable, we show that, denoting , the weak error on densities related to this discretization converges at the rate .
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.