The phase transition of the voter model on evolving scale-free networks

IF 1.2 2区 数学 Q3 STATISTICS & PROBABILITY
John Fernley
{"title":"The phase transition of the voter model on evolving scale-free networks","authors":"John Fernley","doi":"10.1016/j.spa.2025.104737","DOIUrl":null,"url":null,"abstract":"<div><div>The voter model on a social network can explain consensus formation, where real networks feature a heterogeneous degree distribution and also change in time. We study the voter model in an environment with both features: a rank one scale-free network evolving in time by each vertex updating its edge neighbourhood at rate <span><math><mi>κ</mi></math></span>.</div><div>When <span><math><mrow><mi>κ</mi><mo>≫</mo><mn>1</mn></mrow></math></span> the dynamic giant has no effect up to a polylogarithmic correction, but for more slowly changing graphs consensus takes <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>κ</mi></mrow></mfrac></math></span> longer without a dynamic giant. This continues until <span><math><mrow><mi>κ</mi><mo>≪</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>N</mi></mrow></mfrac></mrow></math></span>, where this factor <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>κ</mi></mrow></mfrac></math></span> becomes <span><math><mfrac><mrow><mi>N</mi></mrow><mrow><mo>log</mo><mi>N</mi></mrow></mfrac></math></span>.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"190 ","pages":"Article 104737"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925001802","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

The voter model on a social network can explain consensus formation, where real networks feature a heterogeneous degree distribution and also change in time. We study the voter model in an environment with both features: a rank one scale-free network evolving in time by each vertex updating its edge neighbourhood at rate κ.
When κ1 the dynamic giant has no effect up to a polylogarithmic correction, but for more slowly changing graphs consensus takes 1κ longer without a dynamic giant. This continues until κ1N, where this factor 1κ becomes NlogN.
演化无标度网络上选民模型的相变
社会网络上的选民模型可以解释共识的形成,而现实网络具有异质度分布和随时间变化的特点。我们在一个具有两个特征的环境中研究选民模型:一个由每个顶点以k的速率更新其边缘邻域的秩一无标度网络。当κ > 1时,动态巨量对多对数校正没有影响,但对于变化较慢的图,如果没有动态巨量,共识需要1κ更长时间。这种情况一直持续到κ≪1N,此时因子1κ变为NlogN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信