Constrained reduced-order modeling using bounded Gaussian processes for physically consistent reacting flow predictions

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Muhammad Azam Hafeez , Alberto Procacci , Axel Coussement , Alessandro Parente
{"title":"Constrained reduced-order modeling using bounded Gaussian processes for physically consistent reacting flow predictions","authors":"Muhammad Azam Hafeez ,&nbsp;Alberto Procacci ,&nbsp;Axel Coussement ,&nbsp;Alessandro Parente","doi":"10.1016/j.egyai.2025.100554","DOIUrl":null,"url":null,"abstract":"<div><div>Reduced-order models offer a cost-effective and accurate approach to analyzing high-dimensional combustion problems. These surrogate models are built in a data-driven manner by combining computational fluid dynamics simulations with Proper Orthogonal Decomposition (POD) for dimensionality reduction and Gaussian Process Regression (GPR) for nonlinear regression. However, these models can yield physically inconsistent results, such as negative mass fractions. As a linear decomposition method, POD complicates the enforcement of constraints in the reduced space, while GPR lacks inherent provisions to ensure physical consistency. To address these challenges, this study proposes a novel constrained reduced-order model framework that enforces physical consistency in predictions. Dimensionality reduction is achieved by downsampling the dataset through low-cost Singular Value Decomposition (lcSVD) using optimal sensor placement, ensuring that the retained data points preserve physical information in the reduced space. We integrate finite-support parametric distribution functions, such as truncated Gaussian and beta distribution scaled to the interval <span><math><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></mrow></math></span>, into the GPR framework. These bounded likelihood functions explicitly model the observational noise in the bounded space and use variational inference to approximate analytically intractable posterior distributions, producing GP estimations that satisfy physical constraints by construction. We validate the proposed methods using a synthetic dataset and a benchmark case of one-dimensional laminar NH<sub>3</sub>/H<sub>2</sub> flames. The results show that the thermo-chemical state predictions comply with physical constraints while maintaining the high accuracy of unconstrained reduced-order models.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"21 ","pages":"Article 100554"},"PeriodicalIF":9.6000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546825000862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Reduced-order models offer a cost-effective and accurate approach to analyzing high-dimensional combustion problems. These surrogate models are built in a data-driven manner by combining computational fluid dynamics simulations with Proper Orthogonal Decomposition (POD) for dimensionality reduction and Gaussian Process Regression (GPR) for nonlinear regression. However, these models can yield physically inconsistent results, such as negative mass fractions. As a linear decomposition method, POD complicates the enforcement of constraints in the reduced space, while GPR lacks inherent provisions to ensure physical consistency. To address these challenges, this study proposes a novel constrained reduced-order model framework that enforces physical consistency in predictions. Dimensionality reduction is achieved by downsampling the dataset through low-cost Singular Value Decomposition (lcSVD) using optimal sensor placement, ensuring that the retained data points preserve physical information in the reduced space. We integrate finite-support parametric distribution functions, such as truncated Gaussian and beta distribution scaled to the interval [a,b], into the GPR framework. These bounded likelihood functions explicitly model the observational noise in the bounded space and use variational inference to approximate analytically intractable posterior distributions, producing GP estimations that satisfy physical constraints by construction. We validate the proposed methods using a synthetic dataset and a benchmark case of one-dimensional laminar NH3/H2 flames. The results show that the thermo-chemical state predictions comply with physical constraints while maintaining the high accuracy of unconstrained reduced-order models.

Abstract Image

使用有界高斯过程进行物理一致反应流预测的约束降阶建模
降阶模型为分析高维燃烧问题提供了一种经济、准确的方法。这些代理模型以数据驱动的方式建立,将计算流体动力学模拟与适当正交分解(POD)降维和高斯过程回归(GPR)非线性回归相结合。然而,这些模型可能产生物理上不一致的结果,例如负质量分数。POD作为一种线性分解方法,使约束在约简空间中的执行变得复杂,而GPR缺乏保证物理一致性的固有规定。为了解决这些挑战,本研究提出了一种新的约束降阶模型框架,该框架在预测中强制实现物理一致性。降维是通过低成本的奇异值分解(lcSVD)对数据集进行降采样来实现的,使用最优的传感器位置,确保保留的数据点在降维空间中保留物理信息。我们将有限支持的参数分布函数(如截断的高斯分布和缩放到区间[a,b]的beta分布)集成到GPR框架中。这些有界似然函数明确地模拟有界空间中的观测噪声,并使用变分推理来近似解析上难以处理的后验分布,从而产生满足构造物理约束的GP估计。我们使用合成数据集和一维层流NH3/H2火焰的基准案例验证了所提出的方法。结果表明,在保持无约束降阶模型的高精度的同时,热化学态预测符合物理约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信