Decision-focused fine-tuning of time series foundation models for dispatchable feeder optimization

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Maximilian Beichter , Nils Friederich , Janik Pinter , Dorina Werling , Kaleb Phipps , Sebastian Beichter , Oliver Neumann , Ralf Mikut , Veit Hagenmeyer , Benedikt Heidrich
{"title":"Decision-focused fine-tuning of time series foundation models for dispatchable feeder optimization","authors":"Maximilian Beichter ,&nbsp;Nils Friederich ,&nbsp;Janik Pinter ,&nbsp;Dorina Werling ,&nbsp;Kaleb Phipps ,&nbsp;Sebastian Beichter ,&nbsp;Oliver Neumann ,&nbsp;Ralf Mikut ,&nbsp;Veit Hagenmeyer ,&nbsp;Benedikt Heidrich","doi":"10.1016/j.egyai.2025.100533","DOIUrl":null,"url":null,"abstract":"<div><div>Time series foundation models provide a universal solution for generating forecasts to support optimization problems in energy systems. Those foundation models are typically trained in a prediction-focused manner to maximize forecast quality. In contrast, decision-focused learning directly improves the resulting value of the forecast in downstream optimization rather than merely maximizing forecasting quality. The practical integration of forecast values into forecasting models is challenging, particularly when addressing complex applications with diverse instances, such as buildings. This becomes even more complicated when instances possess specific characteristics that require instance-specific, tailored predictions to increase the forecast value. To tackle this challenge, we use decision-focused fine-tuning within time series foundation models to offer a scalable and efficient solution for decision-focused learning applied to the dispatchable feeder optimization problem. To obtain more robust predictions for scarce building data, we use Moirai as a state-of-the-art foundation model, which offers robust and generalized results with few-shot parameter-efficient fine-tuning. Comparing the decision-focused fine-tuned Moirai with a state-of-the-art classical prediction-focused fine-tuning Moirai, we observe an improvement of 9.45% in Average Daily Total Costs.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"21 ","pages":"Article 100533"},"PeriodicalIF":9.6000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546825000655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Time series foundation models provide a universal solution for generating forecasts to support optimization problems in energy systems. Those foundation models are typically trained in a prediction-focused manner to maximize forecast quality. In contrast, decision-focused learning directly improves the resulting value of the forecast in downstream optimization rather than merely maximizing forecasting quality. The practical integration of forecast values into forecasting models is challenging, particularly when addressing complex applications with diverse instances, such as buildings. This becomes even more complicated when instances possess specific characteristics that require instance-specific, tailored predictions to increase the forecast value. To tackle this challenge, we use decision-focused fine-tuning within time series foundation models to offer a scalable and efficient solution for decision-focused learning applied to the dispatchable feeder optimization problem. To obtain more robust predictions for scarce building data, we use Moirai as a state-of-the-art foundation model, which offers robust and generalized results with few-shot parameter-efficient fine-tuning. Comparing the decision-focused fine-tuned Moirai with a state-of-the-art classical prediction-focused fine-tuning Moirai, we observe an improvement of 9.45% in Average Daily Total Costs.

Abstract Image

可调度馈线优化的时间序列基础模型决策微调
时间序列基础模型为生成预测以支持能源系统优化问题提供了一种通用的解决方案。这些基础模型通常以以预测为中心的方式进行训练,以最大限度地提高预测质量。相比之下,以决策为中心的学习直接提高了下游优化预测的结果价值,而不仅仅是最大化预测质量。将预测值实际集成到预测模型中是具有挑战性的,特别是在处理具有不同实例的复杂应用程序时,例如建筑物。当实例拥有特定的特征,需要特定于实例的定制预测来增加预测值时,情况变得更加复杂。为了解决这一挑战,我们在时间序列基础模型中使用以决策为中心的微调,为应用于可调度馈线优化问题的决策为中心的学习提供了可扩展和有效的解决方案。为了获得对稀缺建筑数据的更稳健的预测,我们使用Moirai作为最先进的基础模型,它通过少量参数有效的微调提供了稳健和广义的结果。将以决策为中心的微调Moirai与最先进的以预测为中心的经典微调Moirai进行比较,我们发现平均每日总成本提高了9.45%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信