{"title":"Multiscale wave resonance in composite sinusoidal-elliptical topographies: Critical transitions and analytical control","authors":"Xiaofeng Li","doi":"10.1016/j.rinam.2025.100615","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents the first analytical solution for wave propagation over composite seabeds integrating sinusoidal sandbars with truncated semi-elliptical topographies, overcoming limitations of conventional mild-slope equations in handling elliptical curvature effects, coupled Bragg scattering, and singularities at truncated boundaries. Utilizing Frobenius series expansion and multi-region field matching, we systematically quantify how geometric parameters—<span><math><mrow><mi>a</mi><mo>/</mo><mi>b</mi></mrow></math></span> ratio, <span><math><mrow><mi>δ</mi><mo>/</mo><mi>a</mi></mrow></math></span>, and <span><math><mrow><msub><mrow><mi>h</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>/</mo><mi>b</mi></mrow></math></span>—govern wave reflection coefficients (<span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span>). Key discoveries reveal that the <span><math><mrow><mi>a</mi><mo>/</mo><mi>b</mi></mrow></math></span> ratio controls resonance peak frequencies (inducing 12% shifts per 0.1 change), the radius parameter <span><math><mrow><mi>r</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>/</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> triggers complete reflection (<span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>→</mo><mn>1</mn></mrow></math></span>) at a critical value of 0.5, and optimal <span><math><mrow><mi>δ</mi><mo>/</mo><mi>a</mi></mrow></math></span> expands reflection bandwidth by up to 22%. This work transcends classical studies on singular seabed types, establishes a theoretical foundation for designing wave-control metamaterials via multiscale resonances, and bridges classical potential flow theory with modern coastal engineering applications in wave energy harvesting, coastal protection, and offshore structure design.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"27 ","pages":"Article 100615"},"PeriodicalIF":1.3000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents the first analytical solution for wave propagation over composite seabeds integrating sinusoidal sandbars with truncated semi-elliptical topographies, overcoming limitations of conventional mild-slope equations in handling elliptical curvature effects, coupled Bragg scattering, and singularities at truncated boundaries. Utilizing Frobenius series expansion and multi-region field matching, we systematically quantify how geometric parameters— ratio, , and —govern wave reflection coefficients (). Key discoveries reveal that the ratio controls resonance peak frequencies (inducing 12% shifts per 0.1 change), the radius parameter triggers complete reflection () at a critical value of 0.5, and optimal expands reflection bandwidth by up to 22%. This work transcends classical studies on singular seabed types, establishes a theoretical foundation for designing wave-control metamaterials via multiscale resonances, and bridges classical potential flow theory with modern coastal engineering applications in wave energy harvesting, coastal protection, and offshore structure design.