Multiscale wave resonance in composite sinusoidal-elliptical topographies: Critical transitions and analytical control

IF 1.3 Q2 MATHEMATICS, APPLIED
Xiaofeng Li
{"title":"Multiscale wave resonance in composite sinusoidal-elliptical topographies: Critical transitions and analytical control","authors":"Xiaofeng Li","doi":"10.1016/j.rinam.2025.100615","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents the first analytical solution for wave propagation over composite seabeds integrating sinusoidal sandbars with truncated semi-elliptical topographies, overcoming limitations of conventional mild-slope equations in handling elliptical curvature effects, coupled Bragg scattering, and singularities at truncated boundaries. Utilizing Frobenius series expansion and multi-region field matching, we systematically quantify how geometric parameters—<span><math><mrow><mi>a</mi><mo>/</mo><mi>b</mi></mrow></math></span> ratio, <span><math><mrow><mi>δ</mi><mo>/</mo><mi>a</mi></mrow></math></span>, and <span><math><mrow><msub><mrow><mi>h</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>/</mo><mi>b</mi></mrow></math></span>—govern wave reflection coefficients (<span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span>). Key discoveries reveal that the <span><math><mrow><mi>a</mi><mo>/</mo><mi>b</mi></mrow></math></span> ratio controls resonance peak frequencies (inducing 12% shifts per 0.1 change), the radius parameter <span><math><mrow><mi>r</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>/</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> triggers complete reflection (<span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>→</mo><mn>1</mn></mrow></math></span>) at a critical value of 0.5, and optimal <span><math><mrow><mi>δ</mi><mo>/</mo><mi>a</mi></mrow></math></span> expands reflection bandwidth by up to 22%. This work transcends classical studies on singular seabed types, establishes a theoretical foundation for designing wave-control metamaterials via multiscale resonances, and bridges classical potential flow theory with modern coastal engineering applications in wave energy harvesting, coastal protection, and offshore structure design.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"27 ","pages":"Article 100615"},"PeriodicalIF":1.3000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents the first analytical solution for wave propagation over composite seabeds integrating sinusoidal sandbars with truncated semi-elliptical topographies, overcoming limitations of conventional mild-slope equations in handling elliptical curvature effects, coupled Bragg scattering, and singularities at truncated boundaries. Utilizing Frobenius series expansion and multi-region field matching, we systematically quantify how geometric parameters—a/b ratio, δ/a, and h0/b—govern wave reflection coefficients (KR). Key discoveries reveal that the a/b ratio controls resonance peak frequencies (inducing 12% shifts per 0.1 change), the radius parameter r=(h0h1)/h0 triggers complete reflection (KR1) at a critical value of 0.5, and optimal δ/a expands reflection bandwidth by up to 22%. This work transcends classical studies on singular seabed types, establishes a theoretical foundation for designing wave-control metamaterials via multiscale resonances, and bridges classical potential flow theory with modern coastal engineering applications in wave energy harvesting, coastal protection, and offshore structure design.
复合正弦波-椭圆地形中的多尺度波共振:临界跃迁和分析控制
该研究首次提出了含截断半椭圆地形的正弦沙洲复合地基上波浪传播的解析解,克服了传统的缓坡方程在处理椭圆曲率效应、耦合布拉格散射和截断边界奇异性方面的局限性。利用Frobenius级数展开和多区域场匹配,我们系统地量化了几何参数a/b比、δ/a和h0/b对波反射系数(KR)的影响。关键发现表明,a/b比值控制共振峰值频率(每0.1变化引起12%的偏移),半径参数r=(h0−h1)/h0触发全反射(KR→1),临界值为0.5,最优δ/a将反射带宽扩展到22%。这项工作超越了单一海底类型的经典研究,为设计多尺度共振的控波超材料奠定了理论基础,并将经典势流理论与现代海岸工程在波浪能收集、海岸防护和近海结构设计等方面的应用联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信