A Computable Electronic Health Record ARDS Classifier and the Association Between the MUC5B Promoter Polymorphism and ARDS in Critically Ill Adults

V. Eric Kerchberger MD , J. Brennan McNeil BS , Neil Zheng MD , Diana Chang PhD , Carrie M. Rosenberger PhD , Angela J. Rogers MD , Julie A. Bastarache MD , QiPing Feng PhD , Wei-Qi Wei MD, PhD , Lorraine B. Ware MD
{"title":"A Computable Electronic Health Record ARDS Classifier and the Association Between the MUC5B Promoter Polymorphism and ARDS in Critically Ill Adults","authors":"V. Eric Kerchberger MD ,&nbsp;J. Brennan McNeil BS ,&nbsp;Neil Zheng MD ,&nbsp;Diana Chang PhD ,&nbsp;Carrie M. Rosenberger PhD ,&nbsp;Angela J. Rogers MD ,&nbsp;Julie A. Bastarache MD ,&nbsp;QiPing Feng PhD ,&nbsp;Wei-Qi Wei MD, PhD ,&nbsp;Lorraine B. Ware MD","doi":"10.1016/j.chstcc.2025.100150","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Large population-based DNA biobanks linked to electronic health records (EHRs) may provide novel opportunities to identify genetic drivers of ARDS.</div></div><div><h3>Research Question</h3><div>Can a computerized algorithm identify ARDS in a large EHR biobank database, and can this be used to identify ARDS genetic risk factors?</div></div><div><h3>Study Design and Methods</h3><div>We developed a classifier algorithm to identify a diagnosis of ARDS as identified from the electronic health record (EHR-ARDS) using diagnostic billing codes, laboratory test results, and chest radiography report text. The classifier model performance was evaluated against investigator-adjudicated ARDS using standard classification metrics including sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and the Cohen κ value. After confirming acceptable classifier performance, we evaluated the association between EHR-ARDS and the <em>MUC5B</em> promoter polymorphism rs35705950 in 2 parallel genotyped cohorts: a prospective biomarker cohort of critically ill adults (Validating Acute Lung Injury Biomarkers for Diagnosis [VALID]) and a retrospective cohort from our institution’s de-identified EHR biobank, BioVU.</div></div><div><h3>Results</h3><div>We included 2,795 patients from VALID and 9,025 hospitalized participants from BioVU. EHR-ARDS showed moderate agreement with investigator-adjudicated ARDS (VALID: sensitivity, 0.86; specificity, 0.70; PPV, 0.49; NPV, 0.93; and κ, 0.45; BioVU: sensitivity, 0.94; specificity, 0.81; PPV, 0.66; NPV, 0.97; and κ, 0.67). We observed a significant age-gene interaction effect for EHR-ARDS in VALID: among older patients, rs35705950 was associated with increased EHR-ARDS risk (OR, 1.37; 95% CI, 1.05-1.78; <em>P</em> = .019), whereas among younger patients, this association was absent (OR, 0.92; 95% CI, 0.70-1.21; <em>P</em> = .55). In BioVU, rs35705950 was associated with EHR-ARDS among all participants (OR, 1.20; 95% CI, 1.01-1.43; <em>P</em> = .043); however, this effect did not vary by age.</div></div><div><h3>Interpretation</h3><div>The <em>MUC5B</em> promoter polymorphism was associated with EHR-ARDS in 2 parallel cohorts of at-risk adults. An age-gene effect modification was observed in VALID, whereas BioVU identified a consistent association between <em>MUC5B</em> and EHR-ARDS regardless of age. Our study highlights the potential for EHR biobanks to enable precision medicine ARDS studies.</div></div>","PeriodicalId":93934,"journal":{"name":"CHEST critical care","volume":"3 3","pages":"Article 100150"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CHEST critical care","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949788425000231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Large population-based DNA biobanks linked to electronic health records (EHRs) may provide novel opportunities to identify genetic drivers of ARDS.

Research Question

Can a computerized algorithm identify ARDS in a large EHR biobank database, and can this be used to identify ARDS genetic risk factors?

Study Design and Methods

We developed a classifier algorithm to identify a diagnosis of ARDS as identified from the electronic health record (EHR-ARDS) using diagnostic billing codes, laboratory test results, and chest radiography report text. The classifier model performance was evaluated against investigator-adjudicated ARDS using standard classification metrics including sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and the Cohen κ value. After confirming acceptable classifier performance, we evaluated the association between EHR-ARDS and the MUC5B promoter polymorphism rs35705950 in 2 parallel genotyped cohorts: a prospective biomarker cohort of critically ill adults (Validating Acute Lung Injury Biomarkers for Diagnosis [VALID]) and a retrospective cohort from our institution’s de-identified EHR biobank, BioVU.

Results

We included 2,795 patients from VALID and 9,025 hospitalized participants from BioVU. EHR-ARDS showed moderate agreement with investigator-adjudicated ARDS (VALID: sensitivity, 0.86; specificity, 0.70; PPV, 0.49; NPV, 0.93; and κ, 0.45; BioVU: sensitivity, 0.94; specificity, 0.81; PPV, 0.66; NPV, 0.97; and κ, 0.67). We observed a significant age-gene interaction effect for EHR-ARDS in VALID: among older patients, rs35705950 was associated with increased EHR-ARDS risk (OR, 1.37; 95% CI, 1.05-1.78; P = .019), whereas among younger patients, this association was absent (OR, 0.92; 95% CI, 0.70-1.21; P = .55). In BioVU, rs35705950 was associated with EHR-ARDS among all participants (OR, 1.20; 95% CI, 1.01-1.43; P = .043); however, this effect did not vary by age.

Interpretation

The MUC5B promoter polymorphism was associated with EHR-ARDS in 2 parallel cohorts of at-risk adults. An age-gene effect modification was observed in VALID, whereas BioVU identified a consistent association between MUC5B and EHR-ARDS regardless of age. Our study highlights the potential for EHR biobanks to enable precision medicine ARDS studies.
可计算电子健康记录ARDS分类器及MUC5B启动子多态性与危重成人ARDS的关系
与电子健康记录(EHRs)相关的大型人群DNA生物库可能为识别ARDS的遗传驱动因素提供新的机会。研究问题:计算机算法能否在大型EHR生物库数据库中识别ARDS,能否用于识别ARDS遗传风险因素?研究设计和方法我们开发了一种分类算法,通过使用诊断账单代码、实验室检查结果和胸片报告文本,从电子健康记录(EHR-ARDS)中识别ARDS诊断。根据研究者判定的ARDS,使用包括敏感性、特异性、阳性预测值(PPV)、阴性预测值(NPV)和Cohen κ值在内的标准分类指标对分类器模型的性能进行评估。在确认了可接受的分类器性能后,我们在两个平行的基因分型队列中评估了EHR- ards与MUC5B启动子多态性rs35705950之间的关系:一个是危重成人的前瞻性生物标志物队列(验证急性肺损伤生物标志物诊断[VALID]),另一个是来自我们机构去鉴定的EHR生物库BioVU的回顾性队列。结果我们纳入了来自VALID的2795名患者和来自BioVU的9025名住院患者。EHR-ARDS与研究者判定的ARDS中度一致(有效:敏感性,0.86;特异性,0.70;PPV 0.49;NPV, 0.93;κ为0.45;BioVU:灵敏度0.94;特异性,0.81;PPV 0.66;NPV, 0.97;κ为0.67)。我们观察到VALID患者EHR-ARDS存在显著的年龄-基因相互作用效应:在老年患者中,rs35705950与EHR-ARDS风险增加相关(OR, 1.37;95% ci, 1.05-1.78;P = 0.019),而在年轻患者中,这种关联不存在(OR, 0.92;95% ci, 0.70-1.21;P = 0.55)。在BioVU中,rs35705950与所有参与者的EHR-ARDS相关(OR, 1.20;95% ci, 1.01-1.43;P = .043);然而,这种影响并不因年龄而异。MUC5B启动子多态性在两个平行队列的高危成人中与EHR-ARDS相关。在VALID中观察到年龄基因效应的改变,而BioVU则发现MUC5B与EHR-ARDS之间存在一致的关联,而与年龄无关。我们的研究强调了电子病历生物库在精确医学ARDS研究中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CHEST critical care
CHEST critical care Critical Care and Intensive Care Medicine, Pulmonary and Respiratory Medicine
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信